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a b s t r a c t 

The ratio estimator of the markup is the ratio of the output elasticity for a flexible in- 

put to that input’s cost share in total revenue. We highlight identification and estimation 

issues pertaining to this ratio estimator, when firm-level output prices are not observed. 

If the revenue elasticity for a flexible input is used in place of the output elasticity, then 

profit maximization implies that the ratio estimator is identically equal to one, and thus 

is uninformative about markups. Concerning estimation of output elasticities: with only 

revenue data, profit maximization also implies that the output elasticity is not identified 

non-parametrically from estimation of the revenue production function, if firms have mar- 

ket power. Even with separate output price and quantity data, it is challenging to estimate 

the output elasticity consistently if there are non-linear productivity dynamics and firms 

face heterogeneous demand schedules, with unobserved variation in a demand shifter. 

© 2021 Elsevier B.V. All rights reserved. 

 

 

1. Introduction 

The production approach to markup estimation identifies a firm’s markup as the ratio of the output elasticity for a 

flexible input to that input’s cost share in total revenue. We refer to this estimator of the markup as the ratio estimator. 1 

This paper evaluates the usefulness of the ratio estimator of the markup in settings in which the empirical measure of

output is revenue, rather than physical quantity, and firms have market power in output markets. 

The production approach was pioneered by Hall (1986, 1988) , in his estimates of aggregate industry-level markups. 

The recent literature extends the Hall methodology to estimate microeconomic firm- or establishment-level markups (see 

De Loecker and Warzynski (2012) , De Loecker et al. (2020) , and many others). The microeconomic ratio estimator is widely
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Institute IO and the November 2020 CRNYU Conference on Public Policy (Market Power and Macro Policy) for helpful comments and suggestions. Tu ̆gçe 

Türk provided excellent research assistance. 
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1 Strictly speaking, this is the estimand of the ratio estimator, since the output elasticity is not measured directly and typically has to be estimated. 
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used across the IO, trade, and macro literatures, and also serves as a popular tool for characterizing the distribution of

markups in several economic models, including granular business cycles ( Burstein et al., 2020 ), misallocation in production 

networks ( Baqaee and Farhi, 2020 ), and monopolistic competition with heterogeneous firms ( Mrázová et al., 2018 ). Many

important pitfalls of the ratio estimator have already been discussed (see Traina (2018) , Basu (2019) , and Syverson (2019) ). 2 

The issues that we raise in this paper should serve as a caution against drawing inferences from firm-level markup estimates

based on the production approach in settings in which firm-level output prices are unobserved. 

When physical output quantities are unobserved, as is the case in most of the papers cited above, it is common practice

to proxy output with revenues or value added, deflated with common industry-level price deflators. This approach uses 

the revenue elasticity for a flexible input, in place of the output elasticity, in the numerator of the ratio estimator. Klette

and Griliches (1996) show that, if firm-level output prices are unobserved and correlated with firms’ input choices, then 

estimators of the revenue elasticity are downward-biased estimators of the output elasticity. We show that the implications 

of this so-called omitted price bias for identifying markups are much more severe than just generating downward bias in 

the ratio estimator. Under the standard assumption that the flexible input and the output price are determined from a 

static profit maximization problem, the ratio estimator that uses the revenue elasticity in place of the output elasticity is 

identically equal to one, and therefore contains no useful information about markups. We pursue the implications of this 

observation for the identification and estimation of markups using the ratio estimator of the production approach. 

The first part of our paper concerns the identification of markups using the ratio estimator. In Section 2.1 , we abstract

from estimation issues and suppose that the revenue elasticity and output elasticity are known. We then assess the impli- 

cations for identifying markups of using one elasticity versus the other in the numerator of the ratio estimator. The main

takeaway from this section is that it is essential that the output elasticity, rather than the revenue elasticity, is used in the

numerator of the ratio estimator. Even in this best case scenario in which population elasticities are known, replacing the 

output elasticity with the revenue elasticity removes all information about the markup from the ratio estimator. This result 

follows from imposing firms’ static profit maximization conditions in addition to cost minimization. 

In Section 2.2 , we raise two additional challenges for identifying markups that arise even when the output elasticity is

used in the numerator of the ratio estimator. First, we show that if the input that is used to construct the ratio estimator

incurs costs of adjustment, then the ratio estimator reflects the shadow cost of adjusting the input as well as the markup.

Second, we show that if the input that is used to construct the ratio estimator is used by firms both to produce output and

to influence demand, then the ratio estimator generates a downward-biased estimate of the markup. Such inputs include 

labor and materials used for marketing, product design, or other sales-related purposes (see Syverson (2011) for a related 

discussion in the context of productivity estimation). 

The second part of our paper concerns the estimation of the output elasticity that is required to identify markups using

the ratio estimator. In Section 3.1 , we show that in the usual setting in which the researcher observes only revenue, and

does not have separate information on the price and quantity of output, the output elasticity for a flexible input is not

identified non-parametrically from estimation of the revenue production function, if the flexible input and the output price 

are determined from a static profit maximization problem. There exist parametric restrictions on the forms of the quantity 

production function and the inverse demand curve under which the output elasticity for a flexible input may be estimated 

consistently at one point in the parameter space, but these special cases appear to be of limited empirical relevance. The

main takeaway from this section is that firm-level data on output prices is needed to obtain credible estimates of the output

elasticity for a flexible input from the estimation of a production function when firms have market power. 

We also show that even with firm-level data on output prices, it is still challenging to obtain consistent estimates of

output elasticities for flexible inputs, particularly if there are non-linear dynamics in total factor productivity. With such 

non-linearity, the estimators that are widely used in this context do not estimate the output elasticity for a flexible input

consistently if firms face heterogeneous demand curves with unobserved variation across firms in a demand shifter, or if 

only a firm-level price index is available. In Section 3.2 we briefly discuss the problem of estimating revenue elasticities;

standard estimators do not estimate revenue elasticities consistently in panels with many firms and few time periods, if 

there is unobserved heterogeneity across firms in markups. 

Overall, the identification and estimation issues that we highlight cast serious doubt over whether anything useful can 

be learned about trends or heterogeneity in markups from applying the ratio estimator in settings in which output prices 

and quantities are unobserved. 

2. Difficulties in identifying markups from production function elasticities 

In this section, we clarify the conditions under which markups can be identified from knowledge of production function 

elasticities and the cost shares of flexible inputs in total revenue. 
2 De Loecker and Goldberg (2014) also discuss the implications of unobserved output and input price heterogeneity across firms for production function 

estimation in settings with limited heterogeneity in markups (e.g. monopolistic competition with constant elasticity of substitution demand) and discuss 

partial solutions in these cases. We extend this line of research by studying the implications of omitted output prices for (i) identifying markups using the 

ratio estimator under general demand conditions and market structures and (ii) estimating output elasticities in settings with imperfect competition and 

unobserved heterogeneity in demand. 

2 
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In Section 2.1 , we emphasize that knowledge of the output elasticity for a flexible input, as opposed to knowledge of

the revenue elasticity for that input, is essential in this regard. In Section 2.2 , we highlight two key assumptions that are

required to identify markups. Throughout this section, we abstract from firm heterogeneity in productivity, demand, and 

input prices; we consider these features in Section 3 , where we discuss challenges to estimating the population elasticities

that are treated as known in this section. 

2.1. Output elasticities versus revenue elasticities 

We begin by describing the cost minimization problem upon which the production approach to markup estimation is 

based. Each firm i in period t produces output Q it using a production technology with J flexible inputs: 

Q it = F 

(
X 

1 
it , . . . , X 

J 
it 

)
. 

The only restriction that we place on the production function F : R 

J 
+ → R + is that it is twice continuously differentiable in

each of the inputs 

(
X 1 

it 
, . . . , X 

J 
it 

)
. 3 Denote by W t := 

(
W 

1 
t , . . . , W 

J 
t 

)
the corresponding vector of input prices, over which firms 

have no influence and take as given. The output elasticity of input X 
j 

it 
is defined as 

θQ, j 
it 

:= 

X 

j 
it 

Q it 

∂F ( ·) 
∂X 

j 
it 

. 

We define the estimand of the ratio estimator of the markup using the output elasticity θQ, j 
it 

in the numerator as 

μQ, j 
it 

:= 

θQ, j 
it 

α j 
it 

where α j 
it 

:= 

(
W 

j 
t X 

j 
it 

)
/ ( P it Q it ) denotes the cost share of input X 

j 
it 

in total revenue R it := P it Q it . 

The firm’s static cost minimization problem involves choosing its inputs 

{ 

X 
j 

it 

} J 

j=1 
to minimize total (variable) cost subject 

to producing a target level of output Q it 

C ( Q it ;W t ) := min 

{ X j it } J j=1 

{ 

J ∑ 

j=1 

W 

j 
t X 

j 
it 

} 

s.t. F 

(
X 

1 
it , . . . , X 

J 
it 

)
≥ Q it . 

The total cost function C ( Q it ;W t ) is the solution to this cost minimization problem. Let λit denote the Lagrange multiplier 

on the output constraint. The first order condition with respect to the input X 
j 

it 
is 

W 

j 
t = λit 

∂F ( ·) 
∂X 

j 
it 

. (1) 

By the envelope theorem, the Lagrange multiplier, which measures the shadow value of relaxing the output constraint, 

equals marginal cost 

λit = 

∂C ( ·) 
∂Q it 

. 

The markup μit := P it /λit is defined as the ratio of the output price P it to marginal cost λit . Invoking the envelope theorem,

multiplying both sides of the cost minimization first order condition (1) by X 
j 

it 
, dividing both sides by P it Q it , and rearranging

yields 

μQ, j 
it 

= μit 

for each flexible input X 
j 

it 
. That is, the estimand of the ratio estimator using the output elasticity is equal to the markup, as

shown by De Loecker and Warzynski (2012) . 

Suppose now that the researcher does not have knowledge of the output elasticity θQ, j 
it 

, but rather only has knowledge

of the revenue elasticity, defined as 

θR, j 
it 

:= 

X 

j 
it 

R it 

∂R it 

∂X 

j 
it 

. 
3 For simplicity, we treat all inputs 
{

X j 
it 

}J 

j=1 
as fully flexible, but this is not essential to the points we make in this section. If a subset of the inputs were 

fully fixed or predetermined, we could work with the conditional cost function. In Appendix A.2, we show that our main results are robust to a subset of 

the inputs being partially fixed and subject to adjustment costs. 

3 
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We define the estimand of the analogous ratio estimator of the markup using the revenue elasticity θR, j 
it 

in the numerator

as 

μR, j 
it 

:= 

θR, j 
it 

α j 
it 

. 

We assess whether the ratio estimator using the revenue elasticity θR, j 
it 

in place of the output elasticity θQ, j 
it 

is informative 

about the markup. In this section, we focus on monopolistic competition to illustrate our main theoretical result in the sim-

plest of market structures with imperfect competition. In Appendix A.1, we show that our result is robust to both Bertrand

and Cournot forms of oligopolistic competition with strategic interactions between firms. 

A monopolistic firm faces an arbitrary inverse demand schedule: 

P it = P ( Q it ) . 

The only restrictions that we impose on the function P : R + → R + are that it is twice continuously differentiable and non-

increasing in Q it . The absolute value of the price elasticity of demand is defined as 

ηit := 

∣∣∣∣ P it 
Q it 

∂Q it 

∂P it 

∣∣∣∣ > 1 . 

We can explicitly write the revenue elasticity θR, j 
it 

in terms of the demand elasticity ηit and the output elasticity θQ, j 
it 

θR, j 
it 

= 

(
ηit − 1 

ηit 

)
θQ, j 

it 
. (2) 

Monopolistic firms with market power in output markets face a finite demand elasticity ηit < ∞ . It is then apparent from

Eq. (2) that the revenue elasticity θR, j 
it 

is strictly less than the output elasticity θQ, j 
it 

. 4 

Taking the total cost function C ( Q it ;W t ) from cost minimization as given, the static profit maximization problem involves 

choosing the output quantity Q it to maximize profits subject to the demand schedule 

max 
Q it 

{ P it Q it − C ( Q it ;W t ) } 
s.t. P it = P ( Q it ) . 

The first order condition from profit maximization recovers the markup μit as a function of the demand elasticity ηit 

μit = 

ηit 

ηit − 1 

. (3) 

Imposing both cost minimization and profit maximization, we obtain 

μR, j 
it 

= 

θR, j 
it 

α j 
it 

= 

(
ηit − 1 

ηit 

)θQ, j 
it 

α j 
it 

= 

1 

μit 

μit 

= 1 . 

The first equality follows from the definition of μR, j 
it 

, the second from Eq. (2) , and the third from the first order conditions

from cost minimization (1) and profit maximization (3) . It is apparent that the ratio estimator using the revenue elasticity

contains no useful information about the markup, except in the very special case of perfect competition under which the 

markup equals one. 5 

The result μR, j 
it 

= 1 is a consequence of profit maximization and, importantly, does not depend on the particular details 

of the profit maximization problem, such as the functional form of the demand schedule or the market structure. To un-

derstand why, consider an industry with N competing firms indexed by i ∈ { 1 , . . . , N } . Let Q −it := { Q kt } k � = i denote the vector 

of quantities of all ( N − 1 ) competitors of firm i , and let Q t := 

(
Q it , Q −it 

)
. Consider an arbitrary inverse demand schedule

P it = P i 

(
Q it , Q −it 

)
, for i ∈ { 1 , . . . , N } , constituting a one-to-one mapping between any vector of quantities Q t and correspond-

ing vector of prices P t := ( P 1 t , . . . , P Nt ) . 
6 Let R it = R i 

(
Q it , Q −it 

)
:= P i 

(
Q it , Q −it 

)
Q it denote the revenue function for firm i in
4 Intuitively, a monopolistic firm facing a strictly downward-sloping demand schedule must reduce its output quantity to increase its price. Hence, the 

revenue elasticity is strictly less than the output elasticity. 
5 Under perfect competition, the revenue elasticity equals the output elasticity because firms have no influence over output prices. 
6 We rule out demand schedules for which a flexible input X j 

it 
enters as an additional argument of the function P i ( ·) . We study the implications of such 

cases for identifying markups in Section 2.2 . 

4 
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period t . This formulation allows for a range of market structures, including monopolistic competition (as N → ∞ ) and both

Bertrand and Cournot forms of oligopolistic competition (for a finite N). 

Imposing only cost minimization, we have 

μR, j 
it 

= 

θR, j 
it 

α j 
it 

= 

X 

j 
it 

R it 

∂R i ( ·) 
∂X 

j 
it 

1 

α j 
it 

= 

dR i ( ·) 
dQ it 

1 

P it 

X 

j 
it 

Q it 

∂F ( ·) 
∂X 

j 
it 

1 

α j 
it 

= 

dR i ( ·) 
dQ it 

1 

P it 

θQ, j 
it 

α j 
it 

= 

dR i ( ·) 
dQ it 

μit 

P it 

= 

dR i ( ·) 
dQ it 

[
∂C ( ·) 
∂Q it 

]−1 

for each flexible input X 
j 

it 
. The first equality follows from the definition of μR, j 

it 
, the second from the definition of θR, j 

it 
, the

third from the chain rule and the definition of R it = P it Q it , the fourth from the definition of θQ, j 
it 

, the fifth from cost min-

imization, and the sixth from the definition of the markup μit . Under cost minimization, but not profit maximization, the 

estimand μR, j 
it 

is equal to the ratio of marginal revenue 
dR i ( ·) 

dQ it 
to marginal cost 

∂C ( ·) 
∂Q it 

. Additionally imposing profit maximiza- 

tion 

dR i ( ·) 
dQ it 

= 

∂C ( ·) 
∂Q it 

then gives μR 
it 

= 1 , for all values of the true underlying markup μit . 

Discussion 

For profit maximizing firms, we have established that the estimand of the ratio estimator using the revenue elasticity for 

a flexible input, in place of the output elasticity, contains no information about the markup. Intuitively, the output elasticity 

and the revenue elasticity are only equal when a firm is not able to influence its output price by varying its output quantity.

But the ability to affect price by changing quantity is the reason why firms with market power charge markups above one. 

Our contribution is closely related to Klette and Griliches (1996) , who showed that using revenue in place of output

to estimate an output elasticity results in a downward bias when firms have market power. In our simple example, this

effect is readily seen from Eq. (2) , together with the typical assumption that demand curves slope downward. Since the

ratio estimator should use the output elasticity in the numerator, Klette and Griliches (1996) is often cited as a reason why

using revenue elasticities instead of output elasticities leads to downward-biased estimates of the markup (see for example 

De Loecker and Warzynski (2012) , Section VI). While this is true in a technical sense if the true markup is above one, our

result shows that the problem is more fundamental. The bias in the ratio estimator from using the revenue elasticity, in

place of the output elasticity, removes all the information about the markup, so that the biased estimator is not informative

about the markup at all. 

Unfortunately, output quantities Q it are rarely observed for individual firms. Instead, researchers typically only have ac- 

cess to measures of revenues R it . As we explain in Section 3 , when firms have market power, it is not possible to learn about

the output elasticity θQ, j 
it 

by estimating a production function specification that uses revenue as the dependent variable, un- 

der any reasonable assumptions (and it is challenging even with data on output quantities). With only data on revenues, it

is not clear that we can learn anything about the level of markups using the ratio estimator. 

Finally, it is useful to bear in mind that if it were somehow possible to recover the output elasticity from knowledge of

the revenue elasticity, then it would not be necessary to use the ratio estimator to learn about markups. Under monopolistic

competition, one could simply estimate both the output elasticity and the revenue elasticity, and note from Eqs. (2) and

(3) that the ratio of these two elasticities is an estimator of the markup. This observation is a reminder that the problem

with revenue elasticities that we are highlighting in this section is not one of estimation, but one of identification: any

attempt to learn about the output elasticity from the revenue elasticity must implicitly have assumed knowledge of the 

markup. The resulting output elasticity therefore cannot contain any additional information that is useful in identifying 

markups. 

Since the estimand underlying the ratio estimator is unity when the revenue elasticity is used in the numerator, it is

natural to ask why existing empirical work using this approach does not find estimates that are centered around one. In

the following section, we mention two additional sources of bias in the ratio estimator that are likely to be reflected in

these estimates. In Section 3.2 , we explain why even estimates of the revenue elasticity are likely to be biased. Given these

sources of bias, it is not surprising that estimates using the ratio estimator obtained with revenue data are not centered

around one. 
5 
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2.2. Two additional difficulties in the interpretation of the ratio estimator 

In Section 2.1 , we showed that if the revenue elasticity is used in the numerator of the ratio estimator, then the resulting

estimand is equal to unity, and contains no information about the markup under the assumption of profit maximization. 

But when the output elasticity is used in the numerator of the ratio estimator, the resulting estimand correctly recovers the

markup under the assumption of cost minimization. In this section, we offer two caveats to this result that apply even in

the more favorable case when the output elasticity is known: (i) input adjustment costs, and (ii) inputs that are used not

only for production, but also to influence demand. 

Input adjustment costs 

For the ratio estimator to recover the markup, it is crucial that the input X 
j 

it 
whose output elasticity and cost share are

combined is perfectly flexible. Alternatively, as explained in Basu (2019) , X 
j 

it 
could be a bundle of inputs, of which at least

one component is perfectly flexible, with the other components being fully fixed. However, in reality, inputs rarely fall into 

one of these two extreme cases. A more realistic intermediate case is to assume that inputs are partially adjustable, in the

sense that firms incur costs to adjust their input choices. If the ratio estimator is constructed using an input X 
j 

it 
that is

partially adjustable, or using a bundle that contains partially adjustable inputs, then the estimand of the ratio estimator will 

reflect both the markup and the shadow cost of adjusting those inputs. 

To illustrate this point, assume instead that each input X 
j 

it 
is associated with a baseline quantity X 

j 

it and that the firm

incurs adjustment costs when it chooses a quantity of input X 
j 

it 
� = X 

j 

it . The baseline quantity X 
j 

it might reflect the input choice

from the previous period in a dynamic version of the model. For simplicity, we assume that these costs are given by the

smooth convex function κ j 
(

X 
j 

it 

)
, which satisfies κ j 

(
X 

j 

it 

)
= 0 and 

dκ j 
(

X 
j 
it 

)
dX 

j 
it 

= 0 . In Appendix A.2 we show that the estimand

using the revenue elasticity is then 

μR, j 
it 

= 

θR, j 
it 

α j 
it 

= 1 + 

dκ j 
(
X 

j 
it 

)
dX 

j 
it 

, 

and the estimand using the output elasticity is 

μQ, j 
it 

= 

θQ, j 
it 

α j 
it 

= μit 

[ 

1 + 

dκ j 
(
X 

j 
it 

)
dX 

j 
it 

] 

. 

Thus, even if the output elasticity for an input were known, it is crucial that none of the inputs in the bundle incur adjust-

ment costs, in order for the ratio estimator to recover the markup. 7 

Inputs that influence demand 

The framework in Section 2.1 assumed that the inputs X 
j 

it 
are only used to produce output and not also to influence

demand. Assume instead that the firm’s revenue is given by 

R it := P ( Q it , D it ) Q it 

where D it is an endogenous demand shifter that the firm can influence through the use of inputs according to the function 

D it = D 

(
X 

D, 1 
it 

, . . . , X 

D,J 
it 

)
where X 

D, j 
it 

is the amount of input j used in influencing demand, and X 
Q, j 
it 

is the amount of input j used in production. We

assume that we can observe only the total quantity of input j used by the firm X 
j 

it 
= X 

Q, j 
it 

+ X 
D, j 
it 

. In Appendix A.3, we show

that the estimand underlying the ratio estimator using the output elasticity then becomes 

μQ, j 
it 

= μit 

⎡ 

⎣ 

ψ 

Q, j 
it 

1 + 

X D, j 
it 

X Q, j 
it 

⎤ 

⎦ 

where ψ 

Q, j 
it 

is the elasticity of X 
Q, j 
it 

with respect to X 
j 

it 
evaluated at the optimum, which shows how an additional unit of

X 
j 

it 
is allocated between X 

Q, j 
it 

and X 
D, j 
it 

. So if the flexible input is only used for production and not to influence demand (i.e.

ψ 

Q, j 
it 

= 1 , X 
D, j 
it 

= 0 ), then the ratio estimator using the output elasticity recovers the markup. But if some of the input is used

to influence demand, and this component cannot be separated out, then the ratio estimator will be biased. If the firm uses

a constant fraction of the input X 
j 

it 
for production, then ψ 

Q, j 
it 

= 1 and the ratio estimator is biased downward. For example,
7 These results assume that observed input costs are W 

j 
t X 

j 
it 

rather than W 

j 
t X 

j 
it 

+ W 

j 
t κ

j 
(
X j 

it 

)
. If observed input costs also include the adjustment costs, then 

we would obtain μQ, j 
it 

= μit 

⎛ 

⎝ 

X j 
it 
+ dκ j ( X j it ) 

dX 
j 

it 

X j 
it 
+ κ j 

(
X j 

it 

)
⎞ 

⎠ , which also does not recover the true markup. 

6 
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if, over time, the input X 
j 

it 
is increasingly being used to influence demand, then the ratio estimator will fall, without any

change in the true markup. 

3. Difficulties in estimating production function elasticities when firms have market power 

In Section 2 , we established that when using the ratio estimator to estimate markups, it is critical to use the output

elasticity with respect to a flexible input in the numerator, rather than the revenue elasticity. In this section, we highlight

several difficulties that arise when attempting to estimate the required output elasticity when firms have market power. 

We also note that it is not straightforward to obtain consistent estimates of the revenue elasticity, particularly if there is

unobserved heterogeneity across firms in markups. 

3.1. Estimation of the output elasticity for a flexible input 

We start in Section 3.1.1 by considering the case in which the researcher observes only revenue, and does not have 

separate information on the price and quantity of output. We show that in this case the output elasticity for a flexible input

is not identified non-parametrically from estimation of the revenue production function. There exist parametric restrictions 

on the forms of the quantity production function and the inverse demand curve under which the output elasticity for a

flexible input may be estimated consistently at one point in the parameter space, but these special cases appear to be of

limited empirical relevance for studying heterogeneity in markups. 

In Section 3.1.2 , we then consider the case in which the researcher observes both revenue and the output price for indi-

vidual firms, or equivalently has data on output quantities. In this case the output elasticity for a flexible input is identified

under reasonable conditions if there is no measurement error in the data on output, or if total factor productivity follows

a linear ARMA process. In these cases, output elasticities can be estimated consistently using moment conditions for the 

quantity production function of the kind suggested by Blundell and Bond (20 0 0) . 

Even with output quantity data, consistent estimation of the output elasticity for a flexible input is more challenging if 

output is measured with error and total factor productivity follows a non-linear process. Two stage estimators, of the type 

suggested by Ackerberg et al. (2015) for the estimation of value added production functions for price-taking firms, have 

often been used in this context. 8 The measurement error in observed output is eliminated using a first stage regression, 

which allows non-linear dynamic processes for unobserved total factor productivity to be considered in the second stage. 

The first stage specification requires a valid control function for total factor productivity, which is obtained by inverting a 

demand function for the flexible input in which total factor productivity is the only unobserved component. This approach 

cannot be used if the demand curves are firm-specific and there is some unobserved heterogeneity across firms in a demand

shifter, as well as in total factor productivity, unless the researcher can also control for variation across firms in marginal

costs. 9 

In Section 3.1.3 , we consider the case in which the researcher observes both revenue and a firm-specific output price in-

dex, but does not have data on output price levels for individual firms. Deflating revenue using the firm-specific output price

index results in a measure of output which differs from the true level of output by an unknown multiplicative firm-specific

constant, reflecting differences across firms in output prices in the base year. In logarithmic specifications, this measure- 

ment error can be accounted for by firm-specific fixed effects, but obtaining consistent estimates of output elasticities then 

requires these fixed effects to be taken into account. This is also problematic if we need to deal with non-linearity in the dy-

namic process for total factor productivity. The presence of unobserved firm-specific fixed effects can however be handled 

if total factor productivity follows a linear ARMA process, using the kind of dynamic panel data estimator for production 

functions suggested by Blundell and Bond (20 0 0) . 

3.1.1. Data on revenue 

In this section we consider a three factor Hicks-neutral gross output production function for firm i in period t of the

form 

q it = f (k it , l it , m it ) + ω it (4) 

in which q it is the log of gross output, k it , l it and m it are the logs of observed capital, labor and intermediate inputs re-

spectively, and ω it is the log of total factor productivity, which is observed by the firm but not by the researcher. We treat

capital and labor as predetermined inputs, for which the input levels are chosen before the firm has observed ω it . 
10 We

assume that the level of intermediate inputs is chosen after the firm has observed ω it , and that intermediate inputs do not

incur adjustment costs of any kind; that is, we consider intermediate inputs as our example of an input which is flexible

in the sense required to construct the ratio estimator of the markup. The object of interest is thus the output elasticity

θQ,M := ∂ f ( ·) /∂ m it . 
it 

8 See, for example, De Loecker and Warzynski (2012) and De Loecker et al. (2020) . 
9 This point has also been made in contemporaneous work by Doraszelski and Jaumandreu (2019) . 

10 The predetermined inputs may also be subject to adjustment costs. If so, these adjustment costs do not take the form of foregone production, and do 

not depend on the level of intermediate inputs in any time period. 

7 



S. Bond, A. Hashemi, G. Kaplan et al. Journal of Monetary Economics 121 (2021) 1–14 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The researcher observes neither gross output nor the output price, but only sales revenue or the value of gross output,

the log of which is r it := p it + q it . 
11 To analyze this further, we assume that each firm faces a downward-sloping inverse

demand curve of the form 

p it = p(q it , ξit ) (5) 

in which ξit is a demand shifter, which is observed by the firm and may be observed or unobserved by the researcher. 

The revenue production function which can be estimated in this setting relates the log of observed revenue to the logs

of the observed inputs 

r it = (p it + q it ) = f (k it , l it , m it ) + (p it + ω it ) . (6)

The dependence of intermediate inputs ( m it ) on unobserved total factor productivity ( ω it ) raises issues for the consistent

estimation of the output elasticity θQ,M 

it 
from the quantity production function (4) that are well known in the context of 

price-taking firms; we discuss some additional issues which arise when firms have market power in Section 3.1.2 below. 

The presence of the output price ( p it ) in the error term of the revenue production function (6) raises more fundamental

issues when firms have market power, and their output price depends on q it from (5) , and hence on each of the inputs. This

additional source of inconsistency has been analyzed by Klette and Griliches (1996) and termed the ‘omitted price bias’. 12 

Our contribution here is to show that if the output price and the level of the flexible input are chosen at the same time

to maximize the same objective, then the output elasticity θQ,M 

it 
is not identified non-parametrically from estimation of the 

revenue production function (6) . 

The intuition for this result is straightforward in the special case in which all firms face the same inverse demand curve,

and we have only common shocks ( ξit = ξt for all i ) in (5) . In this case, with observations on ( p it , q it ) constrained to lie along

this downward-sloping demand curve, any firm-specific shock which increases m it and hence q it also reduces p it . In other

words, any informative instrument for m it is correlated with p it and so not a valid instrument in the revenue production

function (6) . With heterogeneity across firms in the inverse demand curves, the same still applies, except in special cases

in which there is no pass through of demand shocks ( ξit ) to the output price. In these special cases, if informative proxies

for the demand shifter are observed by the researcher, and these are uncorrelated with ω it , then these would provide valid

and informative instruments for m it in (6) . However, the special cases with zero pass through of demand shocks to the

output price require strong parametric restrictions on the form of both the quantity production function (4) and the inverse

demand curve (5) , such that at best the output elasticity is identified only at one point in the parameter space. 

To illustrate this, we assume that the firm chooses its output price ( P it ) and level of intermediate inputs ( M it ) to maximize

profits in period t , taking the costs of the predetermined inputs as given, or equivalently to maximize revenue net of variable

costs 

�it := P it Q it − P M 

it M it (7) 

subject to the constraints in (4) and (5) . Here P M 

it 
is the price of one unit of intermediate inputs for firm i in period t , and

p M 

it 
is the log of this price; the input price is observed by the firm, and may be observed or unobserved by the researcher.

We assume that the firm takes total factor productivity ( ω it ), the demand shifter ( ξit ), and the flexible input price ( p M 

it 
) as

given. 

The solution equates marginal revenue and marginal variable cost. We can either find the level of intermediate inputs 

which maximizes net revenue in period t and infer the output price from the inverse demand curve at the resulting level of

output, or we can find the output price and quantity which maximize net revenue in period t and infer the required level of

intermediate inputs. In either case, we obtain decision rules or policy functions which express both m it and p it as functions

of the same state variables (k it , l it ) and the same primitives (ω it , ξit , p 
M 

it 
) : 

m it = m 

∗(k it , l it , ω it , ξit , p 
M 

it ) (8) 

p it = p ∗(k it , l it , ω it , ξit , p 
M 

it ) . 

These decision rules then indicate that any informative instrument for m it in (6) will necessarily be correlated with the 

p it component of the error term, while any instrument that is uncorrelated with p it will not be an informative instrument

for m it . Equivalently, if we were able to control adequately for the p it component of the error term in (6) we would have

exhausted all the sources of variation in the explanatory variable m it . The explanatory variable m it and the error component

p it are ‘functionally dependent’ in the sense of Ackerberg et al. (2015) . Without parametric restrictions, we cannot separately 

identify the contributions of m it and p it to the log of observed revenue r it . 
13 

In this context, variation in the input price p M 

it 
shifts the marginal variable cost schedule; if the demand and marginal

revenue schedules are downward-sloping, this variation necessarily also affects the output price. As a result, there are no 

parametric restrictions that lead to the exclusion of p M from the decision rule for the output price in (8) . The demand

it 

11 We abstract here from any difference between sales revenue and the value of production, due to changes in inventories. 
12 See also De Loecker (2011) and De Loecker and Goldberg (2014) . 
13 The dependence of the output price on the predetermined inputs also indicates that when firms have market power, we do not have moment conditions 

of the form E [(p it + ω it ) | k it , l it ] = 0 , versions of which have typically been used in the estimation of revenue production functions. 
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shocks ξit shift the marginal revenue schedule, and there are admissible parametric restrictions under which there is zero 

pass through of the demand shocks to the output price. This would be the case if we have both constant marginal variable

cost and the markup does not depend on the level of output. 

For example, we may have a Cobb-Douglas gross output production function with increasing returns to scale and a unit 

output elasticity for the flexible input, and a Constant Elasticity of Substitution (CES) demand curve for each firm. 14 In this

case, the demand shocks ξit affect the level of intermediate inputs but not the output price, and observed proxies for the

demand shocks would provide valid and informative instruments for m it in a log-linear version of (6) , provided they are 

also uncorrelated with ω it . This requires heterogeneity across firms in the inverse demand curves, and the output elasticity 

parameter for the flexible input ( βM 

) is identified only at one point ( βM 

= 1 ) in the parameter space. This requirement

for the output elasticity to be unity here suggests that these parametric special cases are likely to be of limited empirical

relevance. Moreover, since identification here relies on shifts in the demand curve, and shifts in the demand curve would 

affect the demand for two or more flexible inputs in the same way, the parametric special cases in which this approach

could be applied are limited to specifications with a single flexible input, as in the example that we have considered here. 15 

3.1.2. Data on revenue and output price levels 

Our result in the previous section indicates that, when firms have market power, data on firm-level output prices is 

fundamental to obtaining credible estimates of the output elasticity for a flexible input from estimation of a production 

function. Here we show that even with a quantity measure of output, it is still challenging to estimate this output elasticity

consistently, particularly if output is measured with error and total factor productivity follows a non-linear dynamic process. 

To simplify the exposition, we now focus on a Cobb-Douglas gross output production function, although the issues we 

highlight apply for any continuously differentiable gross output production function (see Appendix B.1 for details). We fur- 

ther assume that gross output is measured with a multiplicative error, such that the log of observed output is y it := q it + ε it ,
where ε it is a mean zero measurement error. The quantity production function to be estimated then has the form 

y it = βK k it + βL l it + βM 

m it + (ω it + ε it ) . (9) 

For simplicity, we choose units such that the mean of ω it is also zero. We assume that the measurement error ε it is un-

correlated with the observed inputs (k is , l is , m is ) and with the input price p M 

is 
for any s, t , and is independent across firms. 16 

The slope parameters (βK , βL , βM 

) are the output elasticities, which are assumed to be constant over time and common to

all the firms in the sample. Our parameter of interest here is the output elasticity for the flexible input βM 

. 

We again assume that the firm chooses the level of intermediate inputs to maximize net revenue in (7) , subject to the

constraints in (9) and (5) and taking (ω it , ξit , p 
M 

it 
) as given. Without specifying the form of the inverse demand curve (5) ,

we show in Appendix B.1 that the optimal choice of intermediate inputs satisfies the first order condition 

m it = 

ln βM 

1 − βM 

+ 

(
βK 

1 − βM 

)
k it + 

(
βL 

1 − βM 

)
l it + 

(
1 

1 − βM 

)(
p it − ln μit − p M 

it + ω it 

)
(10) 

where μit is the markup of price over marginal cost as in Section 2 , and we can note that z it := p it − ln μit is the log

of marginal cost. The only restriction that we place on the demand curve here is that the output price p it is a weakly

decreasing function of gross output q it . 

We assume that total factor productivity ω it is independent across firms, and start by considering the special case in

which ω it is serially uncorrelated; extensions to more realistic cases in which the unobserved heterogeneity across firms in 

productivity is persistent over time will be considered below. We consider a setting in which panel data is observed for a

large number of firms for a small number of time periods, and asymptotic properties are stated for the case in which the

number of firms increases, with the number of time periods treated as fixed. 

Under these assumptions, we have the moment conditions E [(k it , l it ) u it ] = 0 where u it := ω it + ε it is the error term in (9) .

If the researcher has data on the input price p M 

it 
, and if these input prices vary across firms in a way that is uncorrelated

with ω it , then the price of the flexible input provides a valid and informative instrument for the explanatory variable m it in

(9) . In that case we have the additional moment condition E [ p M 

it 
u it ] = 0 , and the parameter vector (βK , βL , βM 

) is identified

from the estimation of the quantity production function (9) . 
14 That is, we have a gross output production function of the form q it = βK k it + βL l it + βM m it + ω it with βM = θQ,M 
it 

= 1 for all i, t , and returns to scale 

ν = βK + βL + 1 > 1 ; and an inverse demand curve of the form p it = ξit − η−1 q it , where η = ηit > 1 is the absolute value of the price elasticity of demand 

for all i, t . 
15 Note that our results in this section apply to a revenue production function which relates revenue to input quantities , as in (6) . If the specification 

relates revenue to expenditures on (some of) the inputs, so that (some of) the input prices are introduced as additional components of the error term, 

there may also be parametric special cases in which the output elasticities could be estimated consistently. One example has a constant returns to scale 

Cobb-Douglas gross output production function, a CES demand curve with the same demand elasticity for all firms, all inputs fully flexible, and all inputs 

with heterogeneous input prices measured as expenditures. 
16 An alternative interpretation of the two error components in (9) is that ω it denotes the log of the component of total factor productivity that is known 

by the firm when making input decisions in period t , and ε it denotes the log of an unforecastable productivity shock that is not known by the firm when 

making input decisions in period t . The presence of the second component ( ε it ) of the error term here is more important than the particular way we 

introduce it. 
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If the researcher does not have data on the price of the flexible input, or if the variation across firms in these input

prices is correlated with ω it , the parameter vector (βK , βL , βM 

) will still be identified here if either: (i) there is variation

across firms in the input price p M 

it 
which is persistent over time; or (ii) there is variation across firms in the demand shifter

ξit which is persistent over time and results in persistent variation in the log of marginal cost z it . With persistent variation

in either p M 

it 
or z it , the first order condition (10) implies that the lagged input m i,t−1 provides a valid and informative

instrument for the explanatory variable m it in (9) , and in this case we have the additional (informative) moment condition

E [ m i,t−1 u it ] = 0 . 17 

For price-taking firms, it is well known that identification of the output elasticity for a flexible input from estimation of

the quantity production function requires variation across firms in the price of the flexible input. 18 For firms with market 

power and a single flexible input, persistent variation across firms in demand provides a second mechanism through which 

the lagged input may be an informative instrument. This could be useful in applications where the researcher has data on

expenditure on the flexible input, but does not have firm-level data on the price of the flexible input. Expenditure on the

flexible input, deflated using a common price index, provides a suitable measure of the input quantity only if the input

price does not vary across firms. This requirement rules out identification of the output elasticity from estimation of the 

production function for price-taking firms, but may not do so when firms have market power. 

We now extend our discussion to consider more realistic cases in which the variation across firms in unobserved total 

factor productivity is persistent over time, distinguishing between the cases in which ω it follows linear and non-linear 

dynamic processes. In both cases the dynamic process for ω it has to be correctly specified by the researcher. 

Linear TFP process 

The moment conditions discussed above extend straightforwardly to cases in which ω it follows a low order ARMA pro- 

cess. Suppose, for example, that ω it follows an AR(1) process 

ω it = ρω i,t−1 + υit (11) 

with | ρ| < 1 , in which the productivity innovations υit are independent across firms and serially uncorrelated. Substituting 

for ω it and ω i,t−1 in (11) from (9) results in a quasi-differenced representation of the quantity production function in which

the error term is now u it := υit + ε it − ρε i,t−1 : 

(y it − βK k it − βL l it − βM 

m it − ε it ) = ρ(y i,t−1 − βK k i,t−1 − βL l i,t−1 − βM 

m i,t−1 − ε i,t−1 ) + υit 

⇔ (y it − ρy i,t−1 ) = βK (k it − ρk i,t−1 ) + βL (l it − ρl i,t−1 ) + βM 

(m it − ρm i,t−1 ) + (υit + ε it − ρε i,t−1 ) . 

Here we still have moment conditions of the form E [(k is , l is ) u it ] = 0 for s � t . If the researcher has data on the input price,

and the input price is uncorrelated with ω it , we have additional moment conditions E [ p M 

is 
u it ] = 0 for s � t . If the researcher

does not have data on the input price, or if the variation across firms in these input prices is correlated with ω it , but we

have persistent variation across firms in either p M 

it 
or ξit , we have additional (informative) moment conditions E [ m is u it ] = 0

for s � t − 1 . If the measurement error ε it is serially uncorrelated, we also have additional moment conditions E [ y is u it ] = 0

for s � t − 2 . 19 These moment conditions can be used to estimate the parameter vector (βK , βL , βM 

, ρ) consistently in the

quasi-differenced quantity production function, following the approach suggested by Blundell and Bond (20 0 0) . 

Non-linear TFP process 

Similar moment conditions could be used to estimate the output elasticity parameters consistently with non-linear pro- 

cesses for ω it , if gross output is measured without error and ω it is the only component of the error term in the quantity

production function (9) . Otherwise, if we replace the linear AR(1) process (11) by the first-order Markov process 

ω it = g(ω i,t−1 ) + υit , (12) 

the presence of the unobserved ε i,t−1 inside the non-linear function g(ω i,t−1 ) , when we substitute for ω i,t−1 using (9) , will

invalidate moment conditions of the kind considered in the previous sub-section. 

With a non-linear process for ω it and measurement error in output, Flynn et al. (2019) have shown that when firms have

market power, even with a quantity measure of output and all inputs, gross output production functions with a flexible input

are not identified if the decision rule for the flexible input has the form m it = m 

∗
t (k it , l it , ω it ) . Comparison to the decision

rule for m it in (8) indicates that this assumption rules out variation across firms in both the input price ( p M 

it 
) and the

demand shifter ( ξit ). 
20 These are the sources of variation that we relied on in the previous sub-section, for identification of

the output elasticity for the flexible input ( βM 

) in specifications with linear processes for ω it . Our contribution in this sub-

section is to consider whether variation across firms in either p M 

it 
or ξit would allow this key output elasticity parameter to

be estimated consistently, in specifications with a non-linear process for ω it and measurement error in output. 
17 This can also be seen from the decision rule for m it given in (8) . We assume here that the researcher does not observe the demand shifter. If the 

researcher observes ξit , and ξit varies across firms in a way which is uncorrelated with ω it , then ξit could be used as an instrument for m it in (9) , and we 

would not require the variation across firms in ξit to be persistent. The same would apply if the researcher observes an informative proxy for ξit that is 

uncorrelated with ω it . 
18 See Bond and Söderbom (2005) , Ackerberg et al. (2015) and Gandhi et al. (2020) . 
19 This restriction follows naturally if the ε it component of the error term in (9) is interpreted as a shock to productivity that is not known by the firm 

when making input decisions in period t . 
20 The dependence of m 

∗
t (k it , l it , ω it ) on the time period t allows for common variation over time in both p M 

it 
and ξit . 
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We still have moment conditions of the form E [(k is , l is ) υit ] = 0 for s � t and, for example, E [ m is υit ] = 0 for s � t − 1 . To

exploit these moment conditions, we would first need to eliminate the measurement error component ε it from the error 

term of the quantity production function (9) , before we substitute for ω i,t−1 in the non-linear function g(ω i,t−1 ) . 

A two stage estimation procedure of this kind was proposed by Ackerberg et al. (2015) for the estimation of a value

added production function for price-taking firms, and with no flexible inputs. Similar two stage estimators are commonly 

used in the empirical literature that uses the ratio estimator to study markups. 21 De Loecker and Warzynski (2012) proposed

an estimator of this type which can be used when we observe firm-level prices for both output and the flexible input, and

we have persistent variation across firms in the price of the flexible input, and no unobserved variation across firms in

the demand shifter. However, there are problems in applying this approach to the estimation of a gross output production 

function when firms have market power and there is unobserved heterogeneity across firms in the demand shifter ξit . 

The first stage of these two stage procedures relies on having a valid control function which expresses the unobserved 

ω it in (9) as a function of observed variables only. This is obtained by expressing the firm’s optimal choice of the flexible

input m it as a function of observed variables and the single unobserved component ω it . We also require that this function is

strictly monotonic in ω it , so that it can be inverted to provide the control function. A (possibly non-parametric) regression

of y it on the observed inputs and any additional observed variables included in the control function then has the error term

ε it . The predicted values of y it from the estimated first stage regression can then be used in place of the actual values of y it 
when we substitute for ω it and ω i,t−1 in the specified non-linear dynamic process (12) . 

The question here is whether we can find a valid control function of this form in settings where we also have informative

instruments for m it in the second stage of this procedure. We have the decision rule m it = m 

∗(k it , l it , ω it , ξit , p 
M 

it 
) obtained

in (8) . First suppose that the researcher has data on p M 

it 
and all firms face the same demand curve ( ξit = ξt for all i ). Time

dummies ( d t ) can then be used to control for the common demand shocks. The decision rule then depends on the scalar

unobservable ω it , and can be inverted to give the valid control function ω it = h (k it , l it , m it , p 
M 

it 
, d t ) , which can be used in

the first stage regression. If the variation in p M 

it 
is uncorrelated with ω it , we can also use the observed input prices as

instruments for m it in the second stage specification; that is, we have valid and informative moment conditions of the 

form E [ p M 

is 
υit ] = 0 for s � t . If the variation in p M 

it 
is correlated with ω it but persistent over time, we can instead use lagged

intermediate inputs as instruments for m it in the second stage specification; that is, we have valid and informative moment 

conditions of the form E [ m is υit ] = 0 for s � t − 1 . Notice that with no heterogeneity across firms in the demand shifter, we

require persistent variation across firms in the input price here; with firm-level data on the input price, this condition can

be checked. 

Now suppose that the researcher has data on p M 

it 
and there is variation across firms in the demand shifter which is not

perfectly observed by the researcher (i.e. there is some unobserved heterogeneity across firms in ξit ). In this case, we can

no longer express m it as a function of observed variables and the scalar unobservable ω it . We could still invert the function

m it = m 

∗(k it , l it , ω it , ξit , p 
M 

it 
) to obtain ω it = h (k it , l it , m it , ξit , p 

M 

it 
) , but this does not provide a valid control function for ω it if

there is any unobserved variation across firms in the demand shifter ξit . 

Similar issues arise if we consider using the first order condition (10) as the basis for obtaining a control function

for ω it in the first stage regression. In this case, we could still invert the function m it = m (k it , l it , ω it , z it , p 
M 

it 
) to obtain

ω it = h (k it , l it , m it , z it , p 
M 

it 
) , but with unobserved heterogeneity in ξit , the researcher would need to be able to control for

variation in the log of marginal cost z it , to obtain a valid control function. 22 Otherwise, with market power and unobserved

heterogeneity in demand, we cannot allow for non-linearity in the dynamic process for total factor productivity using a two 

stage procedure of this type, even with firm-level data on the price of the flexible input. 23 

3.1.3. Data on revenue and output price indices 

The previous section considered the case in which the researcher has data on both sales revenue and the level of the

output price for individual firms. An intermediate possibility is that the researcher observes an output price index for indi- 

vidual firms, constructed from survey questions about yearly price changes, but does not observe firm-specific price levels 

in the base year. 

If we use these firm-specific output price indices to deflate the value of output in current prices, we obtain 

P i 0 Q it := (P it Q it ) ×
(

P it 
P i 0 

)
where (P it /P i 0 ) is the firm-specific price index, equal to one in the base period t = 0 , and P i 0 is the unobserved price of

output for firm i in that period. 
21 See, for example, De Loecker and Warzynski (2012) and De Loecker et al. (2020) . 
22 This has also been noted by Doraszelski and Jaumandreu (2019) in a more general setting than our example here. With no unobserved variation across 

firms in ξit , we have z it = z(k it , l it , ω it , p 
M 
it 

, d t ) . Substituting for z it in the first order condition and inverting the resulting function then gives the same 

control function ω it = h (k it , l it , m it , p 
M 
it 

, d t ) that we obtained from the decision rule. 
23 The situation is no better if the researcher does not have data on the price of the flexible input. To obtain a valid control function for ω it in the first 

stage regression, we then require no unobserved heterogeneity across firms in ξit and no variation across firms in p M 
it 

. Observed variation in the demand 

shifter ξit would then be needed to provide informative instruments for m it in the second stage specification, and this approach could not be used in a 

specification with two or more flexible inputs. 
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Deflating revenue in this way measures the true level of output Q it up to the unknown multiplicative firm-specific con- 

stant P i 0 , reflecting unobserved differences across firms in the price of output in the base year. In a logarithmic specification,

this will introduce firm-specific intercepts. For example, for the Cobb-Douglas gross output production function considered 

in the previous section, we obtain from (9) 

(p i 0 + y it ) = p i 0 + βK k it + βL l it + βM 

m it + (ω it + ε it ) (13) 

where again y it = q it + ε it , and ε it allows for transient measurement error. Persistent differences across firms in the level of

the output price will be correlated with input choices, so in the panel data sense these firm-specific intercepts will need

to be treated as ‘fixed effects’ (i.e. correlated with the explanatory variables) rather than ‘random effects’ (i.e. uncorrelated 

with the explanatory variables). 24 

In the case where the unobserved total factor productivity component of the error term ω it follows a low order ARMA

process, the ‘dynamic panel data’ estimator for production functions proposed by Blundell and Bond (20 0 0) can accommo-

date unobserved firm-specific fixed effects of this form. This allows consistent estimation of the output elasticity parameters 

(βK , βL , βM 

) provided that ω it follows a linear process and either: (i) we have data on p M 

it 
, and the input price is uncorre-

lated with ω it ; or (ii) there is persistent variation across firms in either p M 

it 
or ξit , such that lagged inputs provide valid and

informative instruments for m it . The key point here is that estimation will need to allow for fixed effects if the researcher

does not have firm-level data on output price levels. 

The two stage estimators which have been developed to allow for non-linear dynamics in ω it cannot allow for unob-

served firm-specific fixed effects in ω it , at least in panel data settings with a small number of time periods. It may be

possible to extend estimators of this type to allow for unobserved firm-specific fixed effects in the measurement error com- 

ponent of the error term, which is the relevant case here. This could be a useful subject for further research, in settings

where we have data on firm-specific price indices but not firm-specific price levels, and are content with the assumption of

no unobserved variation across firms in the demand shifter ξit . 

3.2. Estimation of the revenue elasticity for a flexible input 

In Section 3.1 we showed that the output elasticity for a flexible input is not identified from estimation of the revenue

production function without strong parametric restrictions on the forms of both the gross output production function and 

the inverse demand curve. In this section, we briefly consider conditions under which the revenue elasticity for a flexible 

input can be estimated consistently. 

A useful starting point is the case considered by Klette and Griliches (1996) , with a Cobb-Douglas gross output production

function (9) and a CES inverse demand curve 

p it = δt − η−1 q it + ζit (14) 

in which we have decomposed the demand shifter ξit into common and idiosyncratic components, such that ξit = δt + ζit . 

Here η > 1 is the absolute value of the price elasticity of demand. The revenue production function in this case is 

r o it = (p it + y it ) = βK k it + βL l it + βM 

m it + (p it + ω it + ε it ) (15)

where the log of observed revenue r o 
it 

:= r it + ε it differs from the log of true revenue r it by the additive measurement error

component ε it . 
Substituting for the unobserved output price p it in the error term of (15) from the inverse demand curve (14) , we obtain

the log-linear equation 

r o it = δt + 

(
βK 

μ

)
k it + 

(
βL 

μ

)
l it + 

(
βM 

μ

)
m it + 

[ (
1 

μ

)
ω it + ζit + ε it 

] 
(16) 

which relates observed revenue to the observed inputs. Here μ = 

(
1 − 1 

η

)−1 
> 1 is the markup, and the slope parameters are

the revenue elasticities. The error term contains the idiosyncratic demand shock ζit , in addition to total factor productivity 

ω it and the measurement error ε it . 
The revenue elasticity parameters in (16) can then be estimated consistently using the methods discussed in Section 3.1.2 ,

subject to the limitations that we have noted. For example, if both ω it and ζit are assumed to be serially uncorrelated, we

have moment conditions E [(k it , l it ) u it ] = 0 , where now u it := 

(
1 
μ

)
ω it + ζit + ε it . With persistent variation across firms in the

input price p M 

it 
, the lagged input m i,t−1 provides a valid and informative instrument for m it , and we have the additional (in-

formative) moment condition E [ m i,t−1 u it ] = 0 . This extends straightforwardly to cases in which ω it follows a low order ARMA

process, although not to cases in which ω it follows a non-linear dynamic process (if we do indeed have both unobserved

idiosyncratic demand shocks and measurement error). 
24 A similar issue arises if we use an expenditure measure of one or more of the inputs, deflated using a firm-specific input price index, and there is 

unobserved variation across firms in the level of the input price. 
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In cases where we can estimate these revenue elasticity parameters consistently, we could investigate heterogeneity 

in the markup parameter μ across (large) sub-samples of firms by including suitable interaction terms in (16) , under the

maintained assumption that the output elasticities are common to these sub-samples. 25 

This example also highlights potential problems with estimating the revenue elasticities consistently. Consistent estima- 

tion in the example considered above required the researcher to observe a quantity measure of the flexible input. 26 More

generally, consistent estimation may be difficult if the sum 

(
1 
μ

)
ω it + ζit does not follow a low order ARMA process. Consis-

tent estimation may also be difficult if the markup parameter μ is not common within (large) sub-samples of firms. The 

moment conditions that are typically used to estimate production functions will not be valid if there is unmodeled het- 

erogeneity in the slope parameters in (16) . 27 Finally, consistent estimation of the revenue elasticities is likely to be more

difficult if the gross output production function and inverse demand curve do not take the convenient log-linear forms 

implied by a Cobb-Douglas production technology and a CES demand schedule. 

4. Conclusion 

Our primary objective in this paper is to caution against drawing inferences from firm-level markup estimates based 

on the production approach, when firm-level output prices are not observed. Static profit maximization conditions imply 

that when a revenue elasticity is used in place of an output elasticity, the commonly-used ratio estimator contains no 

useful information about markups. Static profit maximization also implies that the required output elasticity for a flexible 

input is not identified from estimation of a revenue production function, without placing strong parametric restrictions 

on the functional forms of both the production function and the demand schedule. We discuss additional problems with 

the ratio estimator of markups when the flexible input is used by firms not only to produce output, but also to influence

demand; and we show that even with separate data on output prices and quantities, it is still challenging to estimate the

output elasticity for a flexible input consistently, if there are non-linear productivity dynamics and firms face heterogeneous 

demand schedules, with unobserved heterogeneity across firms in a demand shifter. 

These difficulties notwithstanding, the clear implication of our main results is that firm-level data on output prices are 

required to obtain credible estimates of markups using the ratio estimator. With revenue data alone, we are not aware of any

procedures that would allow the level of markups to be recovered, without imposing additional structure on the demand 

side of the market. If a researcher is reluctant to place structure on demand, an alternative is to focus instead on the

difference in mean markups between groups of firms for which one is comfortable assuming that the production function 

parameters are the same across the groups. In Appendix B.2 we show that this difference can be estimated consistently 

without knowledge of the output elasticity, using a regression specification for the cost share in revenue for a flexible input.

A leading example would be the comparison of mean markups across exporters and non-exporters, considered in De Loecker 

and Warzynski (2012) , provided one is willing to assume that production function elasticities do not vary systematically with 

export status. However, this approach is not well suited to studying trends in markups, since the maintained assumption 

that the output elasticity is stable over time cannot be verified without a way of estimating the output elasticity consistently 

for different sub-periods of the sample. 

Supplementary material 

Supplementary material associated with this article can be found, in the online version, at doi: 10.1016/j.jmoneco.2021.05. 

004 . 
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