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Abstract

The ratio estimator of a firm’s markup is the ratio of the output elasticity of
a variable input to that input’s cost share in revenue. This note raises issues that
concern identification and estimation of markups using the ratio estimator. Concerning
identification: (i) if the revenue elasticity is used in place of the output elasticity, then
the estimand underlying the ratio estimator does not contain any information about
the markup; (ii) if any part of the input bundle is either used to influence demand, or is
neither fully fixed nor fully flexible, then the estimand underlying the ratio estimator
is not equal to the markup. Concerning estimation: (i) even with data on output
quantities, it is challenging to obtain consistent estimates of output elasticities when
firms have market power; (ii) without data on output quantities, as is typically the
case, it is not possible to obtain consistent estimates of output elasticities when firms
have market power and markups are heterogeneous. These issues cast doubt over
whether anything useful can be learned about heterogeneity or trends in markups,
from recent attempts to apply the ratio estimator in settings without output quantity
data.
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1 Introduction

This paper is about the interpretation of estimates of firm-level markups based on the
production function approach. Under this approach, the estimator of the markup is the
ratio of the output elasticity of a variable input to that input’s cost share in revenue. We
refer to this estimator of the markup as the ratio estimator. The production function
approach was pioneered by ( , ), in his estimates of industry-level markups.
The ratio estimator builds on Hall’s ideas and has recently been used to estimate firm-level
markups by ( ), ( ) and many others.
The resulting estimates have received wide-spread attention and many potential issues in
the interpretation of these estimates have already been discussed (see ( ),

( ), ( ), ( )). The issues that we raise in this
note appear to have been largely overlooked by the literature.

The issues we discuss are most relevant when data on output quantities are not available,
as in the firm-level studies cited above. When output quantities are not available, it is
common to proxy output with sales or value added, deflated with common industry-level
price deflators. This approach effectively uses the revenue elasticity in place of the output
elasticity in the numerator of the ratio estimator. ( ) show that
when firm-level prices are correlated with input choices, the estimate of the output elasticity
that is obtained in this way is biased downward. We show that for identifying and estimating
markups, this problem is much more severe than just generating a downward bias in the ratio
estimator. At least under monopolistic competition, whenever the true markup is different
from one (i.e. price differs from marginal cost), the estimand underlying this version of the
ratio estimator is not actually a function of the markup. Hence a ratio estimator that uses
the revenue elasticity in the numerator contains no useful information about the markup

at all, and the estimand underlying this estimator is identically equal to one.

In this paper, we pursue the implications of this observation and what they imply for
identification and estimation of markups using the ratio estimator.

The first part of the paper concerns issues related to identification. In Section 2.1, we
consider a best-case scenario in which all the assumptions needed for the ratio estimator to
recover the markup from the output elasticity are satisfied, and in which the revenue and
output elasticities are known. The main takeaway from this section is that it is essential to
use the output elasticity, rather than the revenue elasticity, in the numerator of the ratio
estimator in order to learn about markups. Even in this best-case scenario, replacing the
output elasticity with the revenue elasticity removes all information about the markup from
the ratio estimator. In Section 2.2, we raise two additional challenges for learning about

markups that arise even if the output elasticity were known. First, we show that if the



input that is used to construct the ratio estimator incurs costs of adjustment, then the ratio
estimator reflects the shadow cost of adjusting the input as well as markups. Second, we
show that if the input that is used to construct the ratio estimator is used by firms both to
produce output and to influence demand, then the ratio estimator generates a downward-
biased estimate of the markup. Such inputs include labor and materials used for marketing,
product design or other sales-related tasks (see ( ) for a related discussion in

the context of productivity estimation).

The second part of the paper concerns issues related to estimation of the output elasticity
that is needed in order for the ratio estimator to recover the markup. In Section 3.2 we show
that even if data on output quantities and input quantities are available, it is still challenging
to obtain consistent estimates of output elasticities for flexible inputs. In particular, the
variants of the ( ) estimator that are typically used in the existing
literature are not valid when firms have market power and residual demand schedules are
heterogeneous, even with data on quantities. In Section 3.3 we then show that in the more
usual setting, where only the value of output and expenditure on inputs are observed, it
is not possible to obtain consistent estimates of the required output elasticity, when firms
have market power and there is any interesting heterogeneity in markups. Finally, when
data are available for many firms, but only for a small number of time periods, we show
that it is not even possible to obtain consistent estimates of the revenue elasticity, if there

is firm-level heterogeneity in markups.

Overall, the identification and estimation issues that we raise cast serious doubt over
whether anything useful can be learned about trends or heterogeneity in markups from the
ratio estimator, unless firm-level data on output quantities are observed.

2 Difficulties in Recovering Markups from Production

Function Elasticities

In this section, we clarify conditions under which markups can be recovered from knowledge
of production function elasticities and input cost shares in total revenue. We first emphasize
that knowledge of the output elasticity with respect to a flexible input, as opposed to
the revenue elasticity, is essential in this regard. We then mention additional implicit
assumptions that are required to recover markups even if output elasticities are known.
Throughout this section, we abstract from firm heterogeneity and stochastic shocks; we
consider these features in Section 3 where we discuss challenges to estimating the elasticities
that treated as known in this section.



2.1 Revenue elasticities versus output elasticities

Consider a firm that produces output () using a production function with N inputs, X;,
i=1...N.
Q = FQ(Xl,XQ,...)

The firm purchases inputs in perfectly competitive markets at prices W;, which it takes as
given.! The firm faces an inverse demand curve P (Q); its total revenue is given by R (Q) =
P (Q) Q. Note that the elasticity of revenue with respect to an input X; is determined by

both the elasticity of the inverse demand curve epg = g—g% and the output elasticity of
the input e x, = %% as

erx, = (1 +epq)eq.x, (1)

The profit maximization problem of the firm can be expressed as

M =max P (Q)Q = C(Q), 2)
where C' (@) is the firm’s cost function, defined by

m@:@ﬁ;xm (3)

subject to
Q <Fg(X1,Xs,...)

Attaching a Lagrange multiplier A > 0 to the constraint in the cost minimization problem,
yields the necessary conditions

0 :
WiX; A
PQ - PEQ,Xi

Using sg x, to denote the share of input i’s cost in revenue and applying the envelope

condition yields the familiar relationship between the price to marginal cost ratio, the

'For simplicity, we treat all inputs X; as fully flexible inputs but this is not essential to the points
we make in this section, since if a subset of inputs were fully fixed, we could work with the conditional
cost function. In Appendix A, we show that if a subset of inputs is partially fixed and incurs adjustment
costs that depend on the input choice, this would also not affect the non-identification result with revenue
elasticities, and would introduce a bias even in the case where output elasticities were observed.



output elasticity, and the input cost share in revenue

SRX; = ¢ ](JQ)gQJQ (4)

The first-order condition for the profit maximization problem (2) implies

' (Q)
— =1 )
so that the markup of price over marginal cost is given by p := % =1+ 5]37@)71.

The production function approach to estimating markups is to use the ratio of the
output elasticity of a variable input ¢ x, to that input’s cost share in revenue sg x,. We
€Q

;X5 :
e Re-arranging (4)

will denote the estimand underlying the ratio estimator by fig = o

shows that
o = 1
and so the ratio estimator correctly recovers the markup of price over marginal cost.

What does the ratio estimator recover if one uses the revenue elasticity in place of the

output elasticity? We denote this estimand by fig = iii Combining (1), (4) and (5)
shows that
pr =1

So using the revenue elasticity in place of the output elasticity only recovers an estimate of
the markup when the true markup is 1, i.e. when price is equal to marginal cost. Intuitively,
the output elasticity and the revenue elasticity are only equal when a firm is not able to
influence its output price by varying its quantity. But the ability to affect price by changing
quantity is the typical reason why a firm would price at a markup over marginal cost. Since
the estimand is identically equal to 1 when the revenue elasticity is used in place of the
output elasticity, the ratio of the revenue elasticity to the cost share in revenue does not

contain any information about the actual markup of price over marginal cost.

This observation is closely related to ( ), who showed that using
revenue in place of output to estimate an output elasticity produces a downward bias. In
our simple example, this effect is readily seen from equation (1), together with the typical
assumption that demand curves slope downward epg < 0. Since the ratio estimator uses
the output elasticity in the numerator, ( ) is often cited as a reason
why using revenue elasticities to estimate markups leads to downward-biased estimates of
the markup (see for example ( ), Section VI). While this is
true in a technical sense if the true markup is above 1, it is the wrong interpretation of

the result. The bias in the estimator is the only part of the estimator that contains any
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information about the markup, so that the biased estimator is not informative about the

markup at all.

Unfortunately, output @) is rarely observed for individual firms. Instead, researchers
typically only have access to measures of revenues or sales R. As we explain in Section 3, it
is not possible to learn about the output elasticity e¢ x, from data on revenue when firms
have market power, using existing methods (and it is challenging even with data on output
Q). It follows that with only data on revenues, nothing at all can be learned from the ratio
estimator to learn about the level of markups.

Finally, it is useful to bear in mind that if it were somehow possible to learn the output
elasticity with only knowledge of the revenue elasticity, then it would not be necessary to use
the ratio estimator. One could simply estimate both the output elasticity and the revenue
elasticity and note from equations (1) and (5) that the ratio of the two elasticities is an
estimator of the markup. This observation is a reminder that the problem with revenue
elasticities that we are highlighting in this section is not one of estimation but one of
identification: any attempt to learn about the output elasticity from the revenue elasticity
must implicitly have assumed knowledge of the markup. The resulting output elasticity can
therefore not contain any additional information that is useful in identifying markups.

Since the estimand underlying the ratio estimator is unity when the revenue elasticity
is used in the numerator, it is natural to ask why existing work does not find estimates
from this approach that are centered around one. In the following sub-section, we mention
two additional sources of bias in the ratio estimator that are likely to be reflected in these
estimates. Then in Section 3.4 we explain why even estimates of the revenue elasticity are
likely to be biased. Given these sources of bias, it is not surprising that estimates using the
ratio estimator obtained with revenue data are not centered around one.

2.2 Two additional difficulties in the interpretation of the ratio

estimator

The previous section showed that when the revenue elasticity is used in the numerator of the
ratio estimator, the resulting estimand is equal to unity, and contains no information about
the markup. But when the output elasticity is used in the numerator of the ratio estimator,
the resulting estimand correctly recovers the markup. In this section, we offer two caveats
to this result that apply even in the more favorable case when the output elasticity is known:

(i) input adjustment costs, and (ii) inputs that are partly used to influence demand.



Input adjustment costs For the ratio estimator to recover the markup, it is crucial
that the input X; whose output elasticity and cost share are combined is perfectly flexible.
Alternatively, as explained in ( ), X; can be a bundle of inputs, of which at least
one component is perfectly flexible, with the other components being fully fixed. However,
in reality, inputs rarely fall into one of these two extreme cases. A more realistic intermediate
case is to assume that inputs are partially adjustable, in the sense that firms incur costs to
adjust their input choices. If the ratio estimator is constructed using an input X; that is
partially adjustable, or using a bundle that contains partially adjustable inputs, then the
ratio estimator will reflect both the markup and the shadow cost of adjusting those inputs.

To illustrate this point, assume instead that each input ¢ is associated with a baseline
quantity X; and that the firm incurs adjustment costs when it chooses a quantity of input
X; # X;. The baseline quantity X; might reflect the input choice from the previous period
in a dynamic version of the model. For simplicity, we assume that these costs are given by
the smooth convex function «; (X;), which satisfies k; (Z) = K| (Z) = 0. In Appendix A
we show that the ratio estimator using the revenue elasticity recovers

N ER,X;

/

(X,
),
SR, X; X

and the ratio estimator using the output elasticity recovers”

~ €Q.X; ’Q; (Xl):|
7 smx, [ Xi

Thus, even if the output elasticity to an input were known, it is crucial that none of the

inputs in the bundle incur adjustment costs, in order for the ratio estimator to recover the

markup.

Inputs that influence demand The framework in the previous section assumed that
the inputs X; are all used to produce output rather than to influence demand. Assume

instead that the firm’s revenue is given by

kR=P(@Q D)@

2These formulas assume that observed input costs are W; X; rather than W; X; + W;k; (X;). If observed

input costs also include the adjustment costs then we would obtain jig = (%) which also does

not recover the true markup.



where D is a demand shifter that the firm can influence through the use of inputs according
to the function

D:FD(X1D7X2D7---)7

where we have denoted the amount of input ¢ used in production as X, and the amount
used in influencing demand as X;p. We assume that we can observe only the total quantity
of input ¢ used by the firm X; = X;p + X, . In Appendix B we show that the estimand

underlying the ratio estimator becomes

,[l [ €Xiq.X;
Q= HT X
1+ pon

where €x,, x, describes how an additional unit of X; is allocated between X;p and X;q. So
if the variable input is only used for production and not to influence demand (ex,, x, = 1,
X;p = 0) then the ratio estimator recovers the markup. But if some of the input is used to
influence demand, and this component is not separated out, then the ratio estimator will
be biased downward. If the firm uses a constant fraction of the input X; for production,
then ex,, x, = 1 and the ratio estimator is biased downward. For example, if, over time,
the input X; is increasingly being used to influence demand, then the ratio estimator will

fall, without any change in the true markup.

3 Difficulties in Estimating Production Function Elas-

ticities when Firms have Market Power

In Section 2, we established that when using the ratio estimator to estimate markups, it is
critical to use the output elasticity with respect to a flexible input in the numerator, rather
than the revenue elasticity. In this section, we highlight several difficulties that arise when

attempting to estimate the required output elasticity when firms have market power.

We first show that even if data on output quantities and input quantities are available,
it is still challenging to obtain consistent estimates of output elasticities for flexible inputs.
In particular, the variants of the ( ) estimator that are typically used
in the existing literature are not valid when firms have market power and residual demand
schedules are heterogeneous, even with data on quantities. We then show that in the more
usual setting where only the value of output and expenditure on inputs is observed, it is
not possible to obtain consistent estimates of the required output elasticity when firms have

market power and heterogeneous markups. Finally, when data is available for many firms
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but only a small number of time periods, we show that it is not even possible to obtain

consistent estimates of the revenue elasticity, if there is firm-level heterogeneity in markups.

3.1 Setup

For ease of exposition, throughout this section we focus on a Cobb-Douglas production
function for gross output (@) with three inputs: capital (K), labor (L), and intermediate
inputs (M). However, the issues we highlight apply for any continuously differentiable
gross output production function (see Appendix C for details). For firm i in period ¢, the

production function can be written in log-linear form as

Vit = Bk + Brlie + Bayrmue + wir + €it, (6)

where natural logarithms are denoted in lower case (e.g. m; = In M;;). Here y;; is the log
of observed output and ¢;; is mean zero measurement error, so that y;; = ¢;; + €4, and wy; is
the log of total factor productivity, which is observed by the firm but not by the researcher.
We choose units such that the mean of wj; is zero.

We assume that the quantity of intermediate inputs M;; is chosen optimally in period t,
after the firm has observed w;;, and that intermediate inputs do not incur adjustment costs
of any kind. The quantities of capital K;; and labor L; used in period ¢ are assumed to
be chosen optimally in period ¢ — 1, after the firm has observed w;,_; but before the firm
has observed w;;. These predetermined inputs may also be subject to costs of adjustment;
if so, these adjustment costs take the form of payments to third parties, not foregone
production, and do not depend on M;;, nor on M;, in any other time period. We assume
that the measurement error £; is uncorrelated with the observed inputs (k;s, l;s, m;s) for any
s,t, and is independent across firms.> The common slope parameters (8x, 8, i) are the
output elasticities. Our parameter of interest is the output elasticity for the flexible input

Mt .

We assume that the firm is a price-taker in all input markets, but has market power
in the product market. Thus, the firm chooses its input demand for M;; and output level
(;; in each period to maximize the difference between its revenue P;;();; and the cost of
intermediate inputs P} M, taking as given the costs of employing capital and labor, and

any associated adjustment costs. In Appendix C, we show that the optimal choice of

3An alternative interpretation of (wjs, &) is that w; denotes the log of the component of total factor
productivity that is known by the firm when making input decisions in period ¢, and ¢;; denotes the log of
a serially uncorrelated productivity shock that is not known by the firm when making input decisions in
period t.



intermediate inputs satisfies the first order condition

_ InBy Br A AL ' 1 e oM
e+ (0 et (725 )t () el ).

where p;; is the markup of price over marginal cost as in Section 2. The only restriction that
we place on the residual demand curve is that the output price P;; is a weakly decreasing
function of gross output Q.

3.2 Estimation of the output elasticity with output quantity data

We start with the special case in which productivity w;; is independent across firms and
serially uncorrelated. We discuss extensions to persistent processes for w;; separately for

each of the estimation strategies we consider below.

In the context of price-taking firms (u; = 1), there are two types of moment conditions
that have been used to obtain GMM estimators of the parameter vector 8 = (Bk, Br, Bu) :

1. Moment conditions of the form E[(k;, lir, m;1—1)vie] = 0, where vy = wi+€4¢, underpin
the GMM estimator suggested by ( ). We refer to this as the
BB approach.

2. Moment conditions of the form E[(ki, lir, m; +—1)w;] = 0 underpin the GMM estimator
suggested by ( ). We refer to this as the ACF approach. Exploit-
ing these ACF moment conditions requires a way to eliminate the measurement error
component e;; from the error term in the observed production function. This is the
role of the first stage regression in the ACF approach, which requires a valid proxy

for unobserved wj;.

Since the firm’s optimal choice of intermediate inputs m; depends on its productivity w;;
(see equation (7)), under both approaches we require a valid and informative instrument
for m;. Both the predetermined inputs (k;, l;;) and the lagged value of the flexible input
m;¢—1 are chosen in period ¢ —1 and hence are uncorrelated with w;; (which is assumed here
to be serially uncorrelated). Thus, under our stated assumptions, both types of moment

conditions are valid.

Identification using either the BB or ACF moments then requires that m;; ; is an
informative instrument for m;; in the production function (6), a requirement that we now

discuss.



BB approach: perfect competition For price-taking firms (In p;; = 0), with the output
price common to all firms (p;; = p; for all i) and with serially uncorrelated w;;, we can see
from (7) that in order for m;; 1 to be an informative instrument for m; at given levels
of k;; and [;;, we require persistent variation across firms in the price of the flexible input
pM .4 TIdentification of the output elasticity for a perfectly flexible input fails if there is
no variation in the real price of that input, and is likely to be weak if the only source of
correlation between m;; and the instrument m;,_; comes through persistence in a common
real input price (pM — py = pM — p; for all i), unless data are available for many time
periods.” However, if there is indeed persistent variation across firms in the input price p,
we can obtain a consistent estimate of £, using the BB moment conditions, provided we
have quantity data on both inputs and output.

( ) extend this approach to allow for low-order ARMA processes
for w;, and for a time-invariant firm fixed-effect component of w;.® The BB approach
also extends straightforwardly to more general functional forms for the production function
with Hicks-neutral productivity.” The limitation of the BB approach is that it does not
extend to non-linear dynamic processes for w;;, due to the presence of the measurement

error component £; in the composite error term v;;.

BB approach: market power In the more relevant case in which firms have market
power, then with a single perfectly flexible input, it is clear from (7) that we no longer
require persistent variation across firms in the input price p¥/ in order for m;; 1 to be an
informative instrument for m;;, as long as there is persistent firm-level variation in output
prices p; and/or markups ;. Heterogeneous demand schedules with idiosyncratic demand
shifters typically ensure firm-level variation in both output prices and markups.® The case
of a single flexible input is particularly favorable here. For example, if we had two perfectly

40ur discussion here, and except where noted below, follows the recent literature on the estimation
of firm-level production functions in assuming that firm-specific data on input and output prices are not
available. If data on p}! are available, and the variation in these input prices is uncorrelated with v;;, these
prices could also be used as instruments for m;.

5See (2005) and (2020), respectively.

6Tf the measurement error € is serially uncorrelated or follows a low-order MA process, suitably lagged
values of observed output y; ;) for some k£ > 0 can be used as additional instruments. This is particularly
important in the case of persistent w;; processes for the identification of additional persistence parameters.

"See ( ) for a recent extension to a specification with labor-augmenting
productivity.

1

80ne exception is the CES demand schedule, given by P; = P, (%’:)7“7 exp (&), where & is the

idiosyncratic demand shifter, (P, Q;) are the aggregate price and quantity indices, and o; > 1 is the
(possibly time-varying) constant elasticity of substitution. This demand schedule implies common variation
in markups ;s = o¢/ (o — 1), but still gives rises to firm-level variation in output prices, which is sufficient
for m; ;—1 to be an informative instrument here, provided the demand variation is persistent.
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flexible inputs, then variation arising from heterogeneity in p;; or u;; would be common to
both inputs, and persistent variation across firms in at least one of the input prices would

then be required, as in the case without market power discussed above.

This discussion clarifies that with quantity data on inputs and output, it may be possible
to consistently estimate the output elasticity for a perfectly flexible input using the BB
moment conditions, provided that unobserved productivity w;; follows a linear dynamic
process. However, this is not the approach that has been taken in the empirical literature
that has applied the production approach to estimate markups. Instead, most of these
applications have followed ( ) in using variants of the ACF
moment conditions.

ACF approach: perfect competition The ACF estimator was developed to estimate
the elasticity of value added with respect to predetermined inputs for price-taking firms. The
advantage of the ACF estimator in this context is that it can allow for non-linear dynamic
processes for unobserved w;;. But here our interest is in estimating the elasticity of gross
output with respect to a flexible input for firms with market power. We will explain why
the ACF approach cannot be used to obtain consistent estimates of the output elasticity
for a perfectly flexible input, even if data on output and input quantities are available,
when there is non-linearity in the productivity process, and heterogeneity in firms’ residual
demand schedules that results in unobserved variation in output prices and/or heterogeneity
in markups. It follows that the ACF approach cannot be used to estimate output elasticities
for the purpose of measuring heterogeneity in markups if non-linearity in the productivity
process is an important feature of the data.

First, recall that in order to allow for non-linearity in the dynamic process for w;, the
first stage of the ACF estimator purges (asymptotically) observed output y;; of measurement
error £;4. This first stage requires a valid proxy for unobserved productivity w;. To obtain
a proxy, ACF assume that the optimal choice of intermediate inputs, m;; = my(ki, lir, wit),
is a strictly monotonic function of the scalar w;;, which can be inverted to express w; =
hi(kit, Lig, miy). For this scalar monotonicity condition to hold in our example, note from
equation (7) that we would require: (i) that the firm is a price-taker in the product market
(Inp; = 0) in addition to input markets; and (ii) that both output and input prices are
common to all firms, i.e. pM —p;; = pM — p, for all i. If these conditions hold, then a linear
regression of y;; on the observed (k;, l;;, m;) and time dummies would suffice to decompose
observed y;; into consistent estimates of its ¢;; and ¢;; components in the Cobb-Douglas
case; more generally, a non-parametric regression of y;; on (kj, Li;, my;) for each period could
be used.

11



This decomposition allows the elasticity of value added with respect to predetermined
inputs for price-taking firms to be estimated consistently, allowing for non-linearity in the
dynamic process for wy, if we have data on input and output quantities. But it does not
follow that this approach can be used to obtain consistent estimates of the output elasticity
for a flexible input, even in this setting. For convenience, we are assuming here that wy
is serially uncorrelated. The natural application of the ACF estimator to the gross output
production function then uses the moment conditions E[(k;, lir, m;—1)wi] = 0. However,
the validity of the ACF proxy requires that the real input price is common to all firms,
which means that, conditional on k; and [;, the only source of correlation between my
and the instrument m;;_; then comes through persistence in the common real input price
pM — p;. Hence, identification is likely to be weak unless data are available for many time
periods, and identification fails if the production function specification includes time-specific

intercepts for any other reason.’

ACF approach: market power In the more relevant case in which firms have market
power, then even the decomposition of observed output into actual output and measurement
error fails, if residual demand schedules are heterogeneous. Even if we maintain that input
prices are common across firms, with market power there is unobserved heterogeneity in
the output price p;; and/or in the markup p;. From equation (7), we then have m;, =
my(Kig, L, Zie, Wit ), where zy := py—In p is the log of marginal cost. If all firms face the same
residual demand schedule, we can express z; = z;(kiy, li, wi), and hence express optimal
my; as a function of the scalar unobservable w;. But in the presence of any heterogeneity
in demand schedules, z;; additionally depends on unobserved firm-level variation in the
demand, violating the scalar unobservable condition required for the ACF proxy for wy.
We can still invert my = my(ki, Ly, 2, wi) to obtain wy = hy(ki, Ly, mi, zi), but without

data on marginal cost z; we cannot use this expression to obtain a valid proxy for w;;.

In Section 3.2 of their online appendix, ( ) discuss an
extension of the ACF proxy for w; to a setting where they assume both that there is
persistent variation across firms in the price of the flexible input p}/, and that these firm-
specific input prices are observed. In this case, the input demand condition becomes m;; =
my(kig, Lie, 2ie, P2, wir) and we have wiy = hy(Kig, Lir, mas, 23, D). But even if we can observe
input prices and include them in the first stage regression, this does not resolve the omission
of the unobserved marginal cost term z;;. ( ) also suggest
including observed firm characteristics such as export status, which may be correlated with
markups, as additional explanatory variables in the first stage regression specification. This

9See (2005) and (2020) for further discussion. (2015)
recognized this difficulty in applying their estimator to gross output production functions (page 2428).
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will only resolve the issue we highlight here if these additional firm characteristics are the

only source of heterogeneity in the omitted z; variable, at given levels of (k;, L, pf‘f , Wit )

The same problem is also discussed in ( ), although they are
also not clear about how z; should then be measured. Implementation of this extended
proxy for w; would require the researcher to have data on marginal costs, which itself is a
function of output prices p;; and markups j;;.'° But one of the supposed attractions of the
production approach to estimating markups is that it appears to not require measurement
of marginal costs. There may be special cases in which we can relate the log of marginal
cost to observed data on firms or establishments, but in general with demand heterogeneity
we will not recover a valid proxy for unobserved w;;. We thus conclude that it is not possible
to allow for non-linearity in the productivity process using the ACF approach when firms
have market power and residual demand schedules are heterogeneous. Hence neither of the
standard estimation approaches allows the output elasticity for a perfectly flexible input to
be estimated consistently in this setting, even with data on output and input quantities.

Estimation with only input expenditure data In practice, it is much more common
to have data on sales revenue and expenditure on intermediate inputs, than it is to have
data on output and input quantities.!’ When firms have market power and output prices
are heterogeneous, the absence of data on output quantities presents a fundamental obstacle
to the consistent estimation of output elasticities, which we review in the next sub-section.
But the absence of data on input quantities poses less of a problem. Using data on the cost

of intermediate inputs (P} M), the gross output production function can be written as

Vit = Bk + Brlic + Baeir + wi — ﬁMP% + Eits

where e;; = p +my; denotes the log of expenditure on intermediate inputs. The additional
component of the error term [Syp}¥ is problematic if input prices vary across firms, and
especially problematic if this input price variation is persistent, in which case lagged values
such as e;;—; will not be valid instruments. This is usually addressed by assuming that
the input price is common across firms (pM = pM for all 1), which may be a reasonable

assumption if firms have no market power in input markets. In the Cobb-Douglas case,

10This has also been noted by ( ) in a more general setting than our
example here.

1 This also applies to the bundle of inputs represented by accounting data on the Cost of Goods Sold,
which is assumed to be perfectly flexible in ( ). Note that we are abstracting here from
any differences between sales and the value of production, and between purchases and the value of inputs
used in production, due to changes in inventories. Further issues arise if these differences are material.
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time-specific intercepts are then sufficient to control for this component of the error term.'?

For price-taking firms (Inp; = 0) and a common output price p;, identification then
becomes weak because persistence in the common real input price (pM —p;) is the only source
of correlation between the instrument e;; ; and the endogenous variable e;;, conditional on
k;; and l;;. For firms with market power, this is less problematic, at least in the case of a
single flexible input, since persistent variation across firms in p;; or u; will again provide
additional identifying information. The output elasticity parameters can then be estimated
consistently using the BB moment conditions E[(k;, lit, €;1—1)vi] = 0, and extensions of this
approach to the case of low-order ARMA processes for w;; are again possible.

3.3 Estimation of the output elasticity with revenue data

More fundamental problems arise when we attempt to use data on observed sales revenue
Ry = P;Yy to estimate the output elasticity (5. The revenue production function is

Tit = Brkit + Brlie + Barei + wir + pir — ﬁMP% + it

where r; = p;; + vz denotes the log of observed revenue. As explained above, the input
price component of the error term is not particularly problematic here if the input price is

common, firms have market power, and use a single flexible input.

But the output price component of the error term p;; now presents a huge challenge
to the consistent estimation of the output elasticity (), from direct estimation of this
revenue production function, for firms with market power. Output prices will certainly
vary across firms, even if input prices and the production technology are common. With
heterogeneity in residual demand schedules, this variation in output prices reflects shocks
to demand, as well as shocks to productivity. The output price also influences the optimal
choice of intermediate inputs, and hence expenditure on those inputs. If this output price
variation is serially uncorrelated, then with w;; also serially uncorrelated, persistence in the
common input price p is the only source of correlation between the instrument e;; ; and
the explanatory variable e;, at given levels of k; and [;; (see equation (7)). In this case,
identification of the output elasticity parameters is again weak, unless data are observed
for many time periods. Conversely, if the output price variation is persistent, this rules
out using lagged input costs such as e;;—; as instruments for e; here. Consequently, it
is not clear that the output elasticity Sy; can be estimated consistently from the revenue

12 Alternatively, input expenditure data in current prices can be deflated using a suitable price index for
the common input price, and a single intercept is then sufficient. For more general functional forms, it may
be necessary to express input expenditure data in constant (base year) prices.
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production function, even in the simplest case where the productivity component of the

error term wy, is assumed to be serially uncorrelated.!?

This problem is the omitted price bias that was highlighted by
( ), but which appears to have been either ignored or glossed over in most empirical
applications of the production approach to estimating markups. No application that we are
aware of can credibly claim to have obtained consistent estimates of the output elasticity,
given the failure of the scalar unobservable condition that is needed to obtain a valid proxy
for unobserved total factor productivity in the ACF approach, and the challenge of dealing
with unobserved heterogeneity in the output price as an omitted variable.

3.4 Estimation of the revenue elasticity

A related question is whether it is possible to obtain consistent estimates of the revenue
elasticity, using typical data on sales revenue and expenditure on intermediate inputs. One
special case in which this may be possible is that studied by ( ),
in which there is Cobb-Douglas technology, monopolistic competition, firms face (possibly
idiosyncratic) constant elasticity of substitution demand schedules, and the markup is fixed
across firms and over time (p;; = ). The revenue elasticity in this case is 5,/ u, consistent
with our more general result in Section 2. If the output elasticity is common to all the firm-
year observations in the sample, then the revenue elasticity is also a common parameter,
which could be estimated consistently using panel data for a fixed number of time periods.**
However, if there is unmodeled heterogeneity in the markup, the revenue elasticity is no
longer a common parameter. All of the standard methods used to estimate (revenue)
production functions rely on moment conditions of the form E(e; ;—1v;) = 0 or E(e; ;—1wit) =
0, which will not be valid if there is an additional error component due to unmodeled
heterogeneity in the coefficient on e;; in the revenue production function.'®

130ne special case in which it may be possible to estimate the output elasticity 3, indirectly is that
studied by ( ), with Cobb-Douglas technology and CES demands, that we discuss
in sub-section 3.4 below. This case is of limited interest for learning about firm-level heterogeneity in
markups.

141n this special case, we may be able to recover a consistent estimate of the output elasticity indirectly,
from consistent estimates of the common revenue elasticity and demand elasticity (and hence markup)
parameters. This estimate may be useful if we are interested in the technology, but contains no additional
information if we are interested in the markup.

15Tn the model y;; = Byt + ui with E(uy;) = 0 and E(z44u;:) # 0, we can obtain consistent estimators of
B if E(x;—1ui) = 0 and x; ¢—1 is also an informative instrument for z;;. With heterogeneity across firms
in the parameter, we have y; = Bz + uyr = Py + uy + (Bi — B)wie = Pxie + (. I the explanatory
variable is serially correlated, we then have E(z;;:—1(;:) # 0, and standard estimators do not estimate
B consistently. With time-invariant heterogeneity of this form, the f; coefficients (and hence ) can be
estimated consistently if panel data is available for a large number of time periods. See
( ) for further discussion.
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Thus with non-trivial heterogeneity across firms or time in markups, it is also challenging
to estimate (mean) revenue elasticities consistently. No application that we are aware of
in this literature has plausibly obtained consistent estimates of (mean) revenue elasticities.
This may be an additional reason why the estimated markups are not centered around
unity, as our analysis in Section 2 of the relationship between true revenue elasticities and
cost shares in revenue for perfectly flexible inputs predicts.

4 Conclusion

Our objective with this note is to encourage others to exercise caution when drawing in-
ferences from firm-level markup estimates based on the production function approach. We
have shown that whenever a revenue elasticity is used in place of an output elasticity, at
least under monopolistic competition, the commonly-used ratio estimator does not contain
any useful information about markups. We are not aware of any procedures that would al-
low one to recover markups from revenue data alone, without imposing additional structure
from the demand side of the market. We have also shown that violation of the widespread
assumption that firms do not use inputs to influence their demand curves leads to an addi-
tional downward bias in the ratio estimator of markups. Since labor is used both to produce
output and to influence demand, this suggests that labor should not be used as part of the
input bundle when estimating markups. More generally, the assumption that any input
bundle that contains a variable input can be used in the ratio estimator is too weak: it is
also important that the input bundle does not contain any input that is used to influence
demand.

Where does that leave us in terms of estimating firm-level markups? One possibility is
to keep searching for reliable measures of changes in both price and quantity at the level at
which one desires to estimate markups. This is the approach taken by ( )
for a small number of US manufacturing industries, and by ( ) for Belgian
manufacturing sectors in which units are well-defined. Another possibility is to estimate
markups by estimating the demand elasticity directly, as in ( ).

A third possibility is to give up on estimating the level of markups and focus on esti-
mating the difference in mean markups across groups of firms for which one is comfortable
with the assumption that they share the same production function parameters. This is
the essence of the approach we outline in Appendix D. We show that for some questions
about markups, one can work directly with the cost share in revenue of a variable input,
and it is not necessary to use the ratio estimator. An example is the exercise in

( ), in which they compare markups across exporters and non-exporters,
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provided one is willing to assume that production function elasticities do not vary system-
atically with export-status. However, this approach is not well suited to studying trends in

markups.
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Online Appendices

A Input adjustment costs

We consider the same firm problem from Section 2 but we now assume that each input ¢ is associated
with a baseline quantity X; and that the firm incurs adjustment costs when it chooses a quantity of input
X; # X;. The baseline quantity X; might reflect the input choice from the previous period in a dynamic
version of the model. For simplicity, we assume that these costs are given by the smooth convex function

ki (X;), which satisfies ; (XZ) =K, (Xl) =0.
The firm’s cost function is now given by

subject to
Q <Fg (X1,X2,...)

where we have normalized the adjustment cost functions by the input price W;. Following the same steps
as in the previous section, we obtain the FOC

0 )
WZ'XZ‘ 1 H; (Xz> _ig
PQ X, | PN

Using sg, x, to denote the share of input #’s cost in revenue and using the envelope condition, this implies

(Xn} edc)

X, D QX 9)

/
K.
SR, X; |:1 + =

Hence the ratio estimator using the revenue elasticity recovers
N ER,X;

= = 1 =+ v R
n SR,X; X;

and the ratio estimator using the output elasticity recovers

R EQ X, Iig (X,L)
= == = 1+ —=—-=.
He SR,X; M{ * X

Why might it be more common to estimate fir > 1 than fir < 1 when using firm-level data? One
hypothesis is that adjustment costs are asymmetrical. It is less costly to use less of an input than previously
planned than to use more of an input. If this is the case then on average we would recover fip > 1. Similarly
if firms are growing on average we would recover fir > 1 on average.

The argument above effectively assumes that observed input costs are W;X; rather than W;X,; +
Wk (X;). If this is the measure of observed input costs then
WiX; + Wik (X;)
SRX, =
R,X; PO
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and we obtain

W X; + Wilﬁ/i (Xl) A

PO T peX
~o €Q.X; _ <Xl +I<L; (Xl))
H SR, X, X+ ki (X3)

so wedge > 1 whenever k¥’ > k.

Neither of the two cases that are typically considered in the literature lead to a bias. The variable input
case is k; = 0, in which case the bias disappears. The fixed input case is one in which X; — X; in which
case the bias also disappears. (Note, however that the fixed input case is not the limit as x; — 0o, and so is
not a special case of the model with adjustment cost model. When x; — oo in the adjustment cost model,
the bias remains even in the limit, even though X; — X;).

B Inputs that influence demand

In this section we show that even if output elasticities are available, markup estimates are biased whenever
the variable factor of production is used partly to affect demand in addition to producing output.

We assume that the firm’s production function is as in Section 2, but that its revenue is now given by

R=P(@Q,D)Q

where D is a demand shifter. The firm can influence the level of demand through the use of inputs according

to the function
D=Fp(Xip,Xop,.-.)-

We denote the amount of input 4 used in production as X;o and the amount used in influencing demand
as X;p. The total quantity of input ¢ used by the firm is X; = X;p + Xiq.

The profit maximization problem of the firm is now
= 1max P (Q,D) Q — Co (Q) — C (D) (10)
where Cg (Q) is the firm’s cost function for producing output, defined by
Cq (Q) ::I)r{lilgzi:XiYWi (11)

subject to
Q <Fg (X10,X20,---)

and Cp (D) is the firm’s cost function for influencing demand, defined by
Cp (D) ::I}SBZXZ»DWZ» (12)

subject to
D <Fp (Xip, Xop,...)
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The optimality conditions from the profit maximization problem (10) are

C!
ep,g + 1= QP(Q) (13)
- CIDI(DIC)?)D (14)

where ep p describes the effect of the demand shifter on the price that a firm can charge for a given
quantity of output. As in the previous section, the optimal markup of price over marginal production cost
. ct -1 _
is p = {7@);@)} =(1+epg) '

The FOC for the production cost minimization problem (11) yields the relationship

Cq (Q)
SR,XiQ = QP ngXi,Q (15)

where sg x,, is the share of revenue paid to input ¢ for use in producing output, and €q x,,, is the elasticity
of output to the use of input ¢ for production. It follows from equation (15) that if one could observe X;¢
separately from X; then the ratio estimator would correctly recover the markup.

However, in practice we observe only the total usage of an input X; = X;o + X;p, rather then the
usage in different activities separately. Using the FOC for the cost minimization problem for influencing
demand (12) yields the relationship

C, (D)D
SR, X;p = DF(’QZ)&:D’XiD (16)

Combining (13),(14), (15) and (16) yields an expression for the total revenue share of input X;

srx;, = (1 +epPQ)eQ,xiq + €P,DED Xip (17)

To see what the ratio estimator recovers, note that the optimality condition for allocating an input X;
between producing goods X;g and influencing demand X;p implies

€Q,X; = €Q,Xi0fXiq,Xi T €Q,XipEXip,Xs = €Q,X:0EX:0,X; (18)

This means that in order to correctly recover the output elasticity of an input X, it is necessary to separately
observe the part of that input that is actually used in producing goods as long as ex,, x, # 1. The fact that
a firm uses inputs partly to influence demand introduces a bias into the estimate of the output elasticity.
It also introduces a bias into the estimate of the markup. Combining (17) and (18) reveals that the ratio
estimator is given by

ﬂ €Xq,X;
Q — X,
1 D
+ X0
There are however special cases in which e XX, = 1, Le. the share of X; in production and in

influencing demand does not depend on the level of X;. For example it is sufficient that the firm faces an
isoelastic demand curve and Fg and Fpp are Cobb-Douglas. If this is the case, there is no bias the estimate
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of the output elasticity, but the ratio estimator is still biased. '©

. 1
HQ =M%

CT My Ze
So if the variable input is only used for production and not to influence demand (X;p = 0) then the ratio
estimator recovers the markup. But if some of the input is used to influence demand, and this component
is not separated out, then the ratio estimator will be biased downward. If, over time, the input X; is
increasingly being used to influence demand, then the ratio estimator will fall over time, without any
change in the true markup.

Casual observation suggests that at least some part of the workforce currently employed in the corporate
sector devotes its energy to influencing demand rather than to producing goods. This suggests that using
labor as an input for estimating markups will yield estimates that are hard to interpret. When using
the ratio estimator, heterogeneity across firms and industries in the extent to which they use labor for
production versus marketing and sales-related expenses will thus manifest as heterogeneity in measured
markups.

These observations also help shed light on the difference in the trend in markups that one obtains from
Compustat data on US firms when one uses only COGS versus when one includes SGA as the variable input
( ( ); ( ); ( )). It seems reasonable to assume
that in the COGS bundle, a larger fraction of the inputs is used to produce output and a smaller fraction
is used to influence demand, than in the SGA bundle. Thus the downward bias in the ratio estimator is
likely to be larger when including SGA in the bundle of variable inputs, versus when using only COGS.
Since the cost share of SGA in total revenue has been increasing relative to the cost share of COGS in total
revenue, this will manifest as a widening gap between the ratio estimator that uses only COGS and the
ratio estimator that also includes SGA. This is precisely what the literature has found.

So far in this section we have proceeded as if output were observed. If only revenue were observed, as
in Section 2.1, then the ratio estimator again recovers figr = 1, regardless of whether the input is being used
for production or to influence demand. Given that Compustat data contains only revenue, not output, the
aforementioned discussion is relevant only if one believes that the procedures in those papers do successfully
recover output elasticities, which we believe they do not.

C Optimal input demand functions

This appendix supplies the derivation of the optimal input demand equation for intermediate inputs under
two technology specifications. Section C.1 provides the derivation for a Cobb-Douglas technology and
Section C.2 provides that for a nonparametric technology.

C.1 Cobb-Douglas

The three-factor Cobb-Douglas production function for gross output @;;, with Hicks-neutral productivity
Wit, 18
Qi = Kg“ Lff MgM exp (wit)

16This result does not require that X;p and X;q are perfect substitutes, but it does require that they
satisfy X; = f (X;p, Xiq) where f is a constant-returns-to-scale function. Thanks to Agustin Gutierrez for
pointing this out.
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Since M;; is the single flexible input, the cost minimizing input demand for M;; can be obtained by
rearranging the Cobb-Douglas production function.

* * 7571{ 7% %\ 5 1
M}, = M (K, Lit, Qi wit) = K, ™ Ly, "™ (Qf;) P exp v (19)

where @), is the optimal output level that is taken as given in cost minimization. Then, the minimized
total variable cost function is

C (Kit, Li, Py, Qo wir) = PYM (Kiy, Lit, Q}y, wit) (20)

where Pijt\/f is the unit input price of M;; that firm i takes as given. Taking the demand system P;; = P; (Q;t),
where P/ (Q;+) < 0, and the total cost function C (Kit,Lit,Pijy,th,wit) as given, firm 4 chooses Q;; to
maximize its static profits.

max {P.(Qit) Qit — C (Kyt, Lit, P}, Qiv,wir) }
it

The first order condition in profit maximization equates marginal revenue to marginal cost.

) —1 M (Kir, Liz, QF,, wi
Pt (Q:t) (W) _ Pljtwa ( 1t7a 117 Qmwlt) (21)
erq (Qf) Q%
where ep o (Qi) is the price elasticity of demand defined as
Py (Qit)
€ i) = ——
P90 =" Fqu q

Equation (21) identifies the optimal markup function u}, = g (QF;) under monopolistic competition in
terms of the demand elasticity.

ﬂwmwuw%wwlem@m
! 0Q;, erQ (@) —1

Applying the functional form in equation (19) to the FOC in equation (21) and solving for ¢}, = InQ?, gives

Bum Bk B B M
InBar + ———kit + lit + i — npg; — pip ) +
T gy MM T g et gy et g, (e I = i)

(@) = P (@3)

1

1= Bar "

q;t = (22)

where pM = InP} and p}, = InP; (Q},). Using equation (22) to substitute for ¢}, in equation (19) produces
the desired micro-founded optimal input demand equation for m;; in terms of the state variables (K, L+, wit),
the exogenous input price p}, and the endogenous optimal output price pf, and markup p,.

|
m, = nBym n Bx ey B

L 1
1-8m  1-Bum 1—-Bum

I_BM(

it + Py — Inpgy — p'f\t/[ + wit)

C.2 Nonparametric technology

The nonparametric three-factor production function for gross output with productivity wj; is
Qit = Fy (Kit, Lig, Mg, wit) (23)

The only restriction we impose on the function F; (-) is that it is continuous and twice differentiable with
respect to its arguments. We index the function F} (-) with a subscript ¢ to allow for technological change
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over time. As in Section C.1, M;; is the single flexible input. Inverting equation (23) produces the cost-
minimizing input demand for M;;.

M, = F7 1 (Kig, Liy, Qfy wit) (24)
The minimized total variable cost function is
Cy (Kt Liv, Pit', Qiyswi) = Py F (Kir, Lig, Qy wir)
Given a demand system P;; = P, (Q;:), the first order condition in profit maximization is

ﬁ — PJI\;I aFt_l (KitvLitv Qz‘nwit)

- . 25)
i Q5 (
Given a functional form for F; (-), equation (25) can be solved for the optimal output level Q3.

Qi = Q¢ (Kit, Lie, Py’ wie, Py, piy) (26)

Using equation (26) to substitute for Q7 in equation (24) yields the micro-founded optimal input demand
function for intermediate inputs.

*
wit, B

M}, = F7 " (K, Liy, Q¢ (Kit, Ly, PY 5 Hit) » Wit)

it

= Mt (KihLit?Pinawih P';;a :u;kt)

In the absence of price data on inputs and outputs, the scalar unobservables in the input demand function
M (+) are (P‘]yawitapit»/lit)o

2

D Learning about variation in markups from variation
in the cost share only

Without a way to estimate the output elasticity for a flexible input consistently from typical production
data, we cannot use the ratio estimator to learn about the level of price-cost markups. We can however still
use insights from the production approach to learn about variation in markups across firms. This variation
can be studied using a regression model for the log of the cost share in total revenue for a perfectly flexible
input. We sketch this ‘cost share approach’ to studying markups in this appendix.

As discussed in Section 2, the ratio estimator relies on the relationship p = iiil Taking logs and
rearranging, we obviously have —Insg x, = —Ineg x, +1n p. First consider the three factor, Cobb-Douglas

case in which intermediate inputs (M) is the perfectly flexible input, as discussed in Section 3. Here
Insg = (pM + m) — (p + q) is the log of the true cost share in revenue for intermediate inputs, and
Ineg v = In By is a constant term. Letting In sy = (pM + mit) — (pit + yir) denote the log of the observed
cost share in revenue for firm 7 in period ¢, we then have

—Insy =—InBy +Inpy +en (27)

where y;: = git + €i+ as before.!”

Without a consistent estimate of the output elasticity (8ar), it is clear that the mean of the log of the
observed cost shares conflates the log of the output elasticity and the mean of the log of the price-cost

1TFor simplicity, we assume here that this is the only source of measurement error in the log of the observed
cost share in revenue. In the Cobb-Douglas case, we can easily allow for (multiplicative) measurement error
in both the numerator and the denominator of the cost share for intermediate inputs.
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markups, and does not separately identify the latter. Nevertheless, under the maintained assumption that
the output elasticity is common to all the firm-year observations, we can use this relation to study variation
in price-cost markups. For example, if the binary dummy D;; indicates whether or not firm ¢ in period ¢ is
an exporter, we can specify a linear relationship between log markups and export status

In pir = 6o + 01Dit + Vit (28)
as in ( ). Substituting (28) into (27), we have the linear specification
—Ins; = (6o — InBur) + 61 Die + (€3t + vit). (29)

In the Cobb-Douglas case, we can thus learn about the association between log markups and export status
from a simple regression of the log of the observed cost share in revenue for a flexible input on a constant
and the export status dummy.'®

For more general Hicks-neutral gross output production functions, we can write the log of the output
elasticity Ineg ar = f(k,1,m),"” in which case (29) becomes

—Insy = g(Kig, lie, mit) + 01Dy + (€ + vir) (30)

where g(kit, lit, mit) = 00 — f(Kit, lit, mit). We can then learn about the association between log markups
and export status either by approximating g(k;¢, l;z, mi:) using a flexible functional form, or by estimating
(30) using semi-parametric methods for partially linear models ( ( ).

This cost share approach allows us to learn about some forms of variation across firms in markups under
essentially the same assumptions needed for the production approach, but without requiring a consistent
estimate of the output elasticity. Except in the Cobb-Douglas case, we could not use this approach to study
the association between markups and measures of firm size (e.g. the log of employment, I;;) or measures
of factor intensity (e.g. the log of the capital-labor ratio, ki — l;+); we may also have low power to detect
significant association between markups and observed firm characteristics that are strongly correlated with
functions of the production inputs. In principle, this approach could also be used to study trends in markups
over time, as in ( ). However, it should be emphasized that the trend in the log of
the cost share in revenue for a flexible input identifies the trend in the log of the markup only under the
maintained assumption that the output elasticity is stable over time, which cannot be verified without a
way of estimating the output elasticity consistently for different sub-periods.

18As in ( ), additional controls can be included in this regression specifi-
cation, but OLS is still unlikely to consistently estimate the causal effect of exporting on markups. If the
sample used to estimate (29) pools data for firms in several sectors, sector dummies can be used to allow
for heterogeneity in the output elasticity Sys between sectors.

9For example, in the translog case, we have f(k,l,m) = In(By + Brark + Brarl + Barm).
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