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Abstract

The ratio estimator of a firm’s markup is the ratio of the output elasticity of a
variable input to that input’s cost share in revenue. This note raises issues that con-
cern identification and estimation of markups using the ratio estimator. Concerning
identification: (i) if the revenue elasticity is used in place of the output elasticity, then
the estimand underlying the ratio estimator does not contain any information about
the markup; (ii) if any part of the input bundle is either used to influence demand,
or is neither fully fixed nor fully flexible, then the estimand underlying the ratio esti-
mator is not equal to the markup. Concerning estimation: (i) without seperate data
on output prices and quantities, as is typically the case, the output elasticity is not
identified non-parametrically from estimation of the revenue production function; (ii)
even with data on output prices and quantities, it is challenging to obtain consistent
estimates of output elasticities when firms have market power and markups are hetero-
geneous. These issues cast doubt over whether anything useful can be learned about
heterogeneity or trends in markups, from recent attempts to apply the ratio estimator
in settings without output quantity data.
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1 Introduction

This paper is about the interpretation of estimates of firm-level markups based on the
production function approach. Under this approach, the estimator of the markup is the
ratio of the output elasticity of a variable input to that input’s cost share in revenue. We
refer to this estimator of the markup as the ratio estimator. The production function
approach was pioneered by Hall (1988, 1986), in his estimates of industry-level markups.
The ratio estimator builds on Hall’s ideas and has recently been used to estimate firm-level
markups by De Loecker and Warzynski (2012), De Loecker et al. (2020) and many others.
The resulting estimates have received wide-spread attention and many potential issues in
the interpretation of these estimates have already been discussed (see Traina (2018), Basu
(2019), Syverson (2019), De Loecker and Eeckhout (2018)). The issues that we raise in this
note appear to have been largely overlooked by the literature.

The issues we discuss are most relevant when data on output quantities are not available,
as in the firm-level studies cited above. When output quantities are not available, it is
common to proxy output with sales or value added, deflated with common industry-level
price deflators. This approach effectively uses the revenue elasticity in place of the output
elasticity in the numerator of the ratio estimator. Klette and Griliches (1996) show that
when firm-level prices are correlated with input choices, the estimate of the output elasticity
that is obtained in this way is biased downward. We show that for identifying and estimating
markups, this problem is much more severe than just generating a downward bias in the ratio
estimator. At least under monopolistic competition, whenever the true markup is different
from one (i.e. price differs from marginal cost), the estimand underlying this version of the
ratio estimator is not actually a function of the markup. Hence a ratio estimator that uses
the revenue elasticity in the numerator contains no useful information about the markup
at all, and the estimand underlying this estimator is identically equal to one.

In this paper, we pursue the implications of this observation and what they imply for
identification and estimation of markups using the ratio estimator.

The first part of the paper concerns issues related to identification of the markup from
variants of the ratio estimator. In Section 2.1, we consider a best-case scenario in which
all the assumptions needed for the ratio estimator to recover the markup from the output
elasticity are satisfied, and in which the revenue and output elasticities are known. The
main takeaway from this section is that it is essential to use the output elasticity, rather
than the revenue elasticity, in the numerator of the ratio estimator in order to learn about
markups. Even in this best-case scenario, replacing the output elasticity with the revenue
elasticity removes all information about the markup from the ratio estimator. In Section
2.2, we raise two additional challenges for learning about markups that arise even if the

1



output elasticity were known. First, we show that if the input that is used to construct the
ratio estimator incurs costs of adjustment, then the ratio estimator reflects the shadow cost
of adjusting the input as well as markups. Second, we show that if the input that is used
to construct the ratio estimator is used by firms both to produce output and to influence
demand, then the ratio estimator generates a downward-biased estimate of the markup.
Such inputs include labor and materials used for marketing, product design or other sales-
related tasks (see Syverson (2011) for a related discussion in the context of productivity
estimation).

The second part of the paper concerns issues related to estimation of the output elas-
ticity that is needed in order for the ratio estimator to recover the markup. In Section 3.1,
we show that in the usual setting in which the researcher observes only revenue, and does
not have separate information on the price and quantity of output, the output elasticity for
a flexible input is not identified non-parametrically from estimation of the revenue produc-
tion function. There exist parametric restrictions on the forms of the quantity production
function and the inverse demand curve under which the output elasticity for a flexible input
may be estimated consistently at one point in the parameter space, but these special cases
appear to be of limited empirical relevance. We also show that even if separate data on
prices and quantities are available, it is still challenging to obtain consistent estimates of
output elasticities for flexible inputs, particularly if only a firm-level price index is available.
In Section 3.2 we discuss the possibilities for estimating the revenue elasticity consistently
with data on revenues, if there is firm-level heterogeneity in markups.

Overall, the identification and estimation issues that we raise cast serious doubt over
whether anything useful can be learned about trends or heterogeneity in markups from the
ratio estimator, unless firm-level data on output quantities and prices are observed.

2 Difficulties in Recovering Markups from Production
Function Elasticities

In this section, we clarify conditions under which markups can be recovered from knowledge
of production function elasticities and input cost shares in total revenue. We first emphasize
that knowledge of the output elasticity with respect to a flexible input, as opposed to
the revenue elasticity, is essential in this regard. We then mention additional implicit
assumptions that are required to recover markups even if output elasticities are known.
Throughout this section, we abstract from firm heterogeneity and stochastic shocks; we
consider these features in Section 3 where we discuss challenges to estimating the elasticities
that treated as known in this section.
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2.1 Revenue elasticities versus output elasticities

Consider a firm that produces output Q using a production function with N inputs, Xi,
i = 1 . . . N .

Q = FQ (X1, X2, . . . )

The firm purchases inputs in perfectly competitive markets at prices Wi, which it takes as
given.1 The firm faces an inverse demand curve P (Q); its total revenue is given by R (Q) =

P (Q)Q. Note that the elasticity of revenue with respect to an input Xi is determined by
both the elasticity of the inverse demand curve εP,Q := ∂P

∂Q
Q
P

and the output elasticity of
the input εQ,Xi

:= ∂Q
∂Xi

Xi

Q
as

εR,Xi
= (1 + εP,Q) εQ,Xi

(1)

The profit maximization problem of the firm can be expressed as

Π = max
Q

P (Q)Q− C (Q) , (2)

where C (Q) is the firm’s cost function, defined by

C (Q) := min
Xi

∑
i

XiWi (3)

subject to

Q ≤FQ (X1, X2, . . . )

Attaching a Lagrange multiplier λ ≥ 0 to the constraint in the cost minimization problem,
yields the necessary conditions

Wi = λ
∂

∂Xi

FQ (Xi) ∀ i

WiXi

PQ
=
λ

P
εQ,Xi

Using sR,Xi
to denote the share of input i’s cost in revenue and applying the envelope

condition yields the familiar relationship between the price to marginal cost ratio, the
1For simplicity, we treat all inputs Xi as fully flexible inputs but this is not essential to the points

we make in this section, since if a subset of inputs were fully fixed, we could work with the conditional
cost function. In Appendix A, we show that if a subset of inputs is partially fixed and incurs adjustment
costs that depend on the input choice, this would also not affect the non-identification result with revenue
elasticities, and would introduce a bias even in the case where output elasticities were observed.
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output elasticity, and the input cost share in revenue

sR,Xi
=
C ′ (Q)

P
εQ,Xi

(4)

The first-order condition for the profit maximization problem (2) implies

C ′ (Q)

P
= 1 + εP,Q (5)

so that the markup of price over marginal cost is given by µ := P
C′(Q)

= (1 + εP,Q)−1.

The production function approach to estimating markups is to use the ratio of the
output elasticity of a variable input εQ,Xi

to that input’s cost share in revenue sR,Xi
. We

will denote the estimand underlying the ratio estimator by µ̂Q :=
εQ,Xi

sR,Xi
. Re-arranging (4)

shows that
µ̂Q = µ

and so the ratio estimator correctly recovers the markup of price over marginal cost.

What does the ratio estimator recover if one uses the revenue elasticity in place of the
output elasticity? We denote this estimand by µ̂R :=

εR,Xi

sR,Xi
. Combining (1), (4) and (5)

shows that
µ̂R = 1

So using the revenue elasticity in place of the output elasticity only recovers an estimate of
the markup when the true markup is 1, i.e. when price is equal to marginal cost. Intuitively,
the output elasticity and the revenue elasticity are only equal when a firm is not able to
influence its output price by varying its quantity. But the ability to affect price by changing
quantity is the typical reason why a firm would price at a markup over marginal cost. Since
the estimand is identically equal to 1 when the revenue elasticity is used in place of the
output elasticity, the ratio of the revenue elasticity to the cost share in revenue does not
contain any information about the actual markup of price over marginal cost.

This observation is closely related to Klette and Griliches (1996), who showed that using
revenue in place of output to estimate an output elasticity produces a downward bias. In
our simple example, this effect is readily seen from equation (1), together with the typical
assumption that demand curves slope downward εP,Q < 0. Since the ratio estimator uses
the output elasticity in the numerator, Klette and Griliches (1996) is often cited as a reason
why using revenue elasticities to estimate markups leads to downward-biased estimates of
the markup (see for example De Loecker and Warzynski (2012), Section VI). While this is
true in a technical sense if the true markup is above 1, it is the wrong interpretation of
the result. The bias in the estimator is the only part of the estimator that contains any
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information about the markup, so that the biased estimator is not informative about the
markup at all.

Unfortunately, output Q is rarely observed for individual firms. Instead, researchers
typically only have access to measures of revenues or sales R. As we explain in Section 3, it
is not possible to learn about the output elasticity εQ,Xi

from data on revenue when firms
have market power, using existing methods (and it is challenging even with data on output
Q). It follows that with only data on revenues, nothing at all can be learned from the ratio
estimator to learn about the level of markups.

Finally, it is useful to bear in mind that if it were somehow possible to learn the output
elasticity with only knowledge of the revenue elasticity, then it would not be necessary to use
the ratio estimator. One could simply estimate both the output elasticity and the revenue
elasticity and note from equations (1) and (5) that the ratio of the two elasticities is an
estimator of the markup. This observation is a reminder that the problem with revenue
elasticities that we are highlighting in this section is not one of estimation but one of
identification: any attempt to learn about the output elasticity from the revenue elasticity
must implicitly have assumed knowledge of the markup. The resulting output elasticity can
therefore not contain any additional information that is useful in identifying markups.

Since the estimand underlying the ratio estimator is unity when the revenue elasticity
is used in the numerator, it is natural to ask why existing work does not find estimates
from this approach that are centered around one. In the following sub-section, we mention
two additional sources of bias in the ratio estimator that are likely to be reflected in these
estimates. Then in Section ?? we explain why even estimates of the revenue elasticity are
likely to be biased. Given these sources of bias, it is not surprising that estimates using the
ratio estimator obtained with revenue data are not centered around one.

2.2 Two additional difficulties in the interpretation of the ratio
estimator

The previous section showed that when the revenue elasticity is used in the numerator of the
ratio estimator, the resulting estimand is equal to unity, and contains no information about
the markup. But when the output elasticity is used in the numerator of the ratio estimator,
the resulting estimand correctly recovers the markup. In this section, we offer two caveats
to this result that apply even in the more favorable case when the output elasticity is known:
(i) input adjustment costs, and (ii) inputs that are partly used to influence demand.
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Input adjustment costs For the ratio estimator to recover the markup, it is crucial
that the input Xi whose output elasticity and cost share are combined is perfectly flexible.
Alternatively, as explained in Basu (2019), Xi can be a bundle of inputs, of which at least
one component is perfectly flexible, with the other components being fully fixed. However,
in reality, inputs rarely fall into one of these two extreme cases. A more realistic intermediate
case is to assume that inputs are partially adjustable, in the sense that firms incur costs to
adjust their input choices. If the ratio estimator is constructed using an input Xi that is
partially adjustable, or using a bundle that contains partially adjustable inputs, then the
ratio estimator will reflect both the markup and the shadow cost of adjusting those inputs.

To illustrate this point, assume instead that each input i is associated with a baseline
quantity Xi and that the firm incurs adjustment costs when it chooses a quantity of input
Xi 6= Xi. The baseline quantity Xi might reflect the input choice from the previous period
in a dynamic version of the model. For simplicity, we assume that these costs are given by
the smooth convex function κi (Xi), which satisfies κi

(
Xi

)
= κ′i

(
Xi

)
= 0. In Appendix A

we show that the ratio estimator using the revenue elasticity recovers

µ̂R =
εR,Xi

sR,Xi

= 1 +
κ′i (Xi)

Xi

,

and the ratio estimator using the output elasticity recovers2

µ̂Q =
εQ,Xi

sR,Xi

= µ

[
1 +

κ′i (Xi)

Xi

]
Thus, even if the output elasticity to an input were known, it is crucial that none of the
inputs in the bundle incur adjustment costs, in order for the ratio estimator to recover the
markup.

Inputs that influence demand The framework in the previous section assumed that
the inputs Xi are all used to produce output rather than to influence demand. Assume
instead that the firm’s revenue is given by

R = P (Q,D)Q

2These formulas assume that observed input costs are WiXi rather than WiXi +Wiκi (Xi). If observed
input costs also include the adjustment costs then we would obtain µ̂Q = µ

(
Xi+κ

′
i(Xi)

Xi+κi(Xi)

)
which also does

not recover the true markup.
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where D is a demand shifter that the firm can influence through the use of inputs according
to the function

D = FD (X1D, X2D, . . . ) ,

where we have denoted the amount of input i used in production as XiQ and the amount
used in influencing demand as XiD. We assume that we can observe only the total quantity
of input i used by the firm Xi = XiD + XiQ . In Appendix B we show that the estimand
underlying the ratio estimator becomes

µ̂Q = µ
εXiQ,Xi

1 + XiD

XiQ

,

where εXiQ,Xi
describes how an additional unit of Xi is allocated between XiD and XiQ. So

if the variable input is only used for production and not to influence demand (εXiQ,Xi
= 1,

XiD = 0) then the ratio estimator recovers the markup. But if some of the input is used to
influence demand, and this component is not separated out, then the ratio estimator will
be biased downward. If the firm uses a constant fraction of the input Xi for production,
then εXiQ,Xi

= 1 and the ratio estimator is biased downward. For example, if, over time,
the input Xi is increasingly being used to influence demand, then the ratio estimator will
fall, without any change in the true markup.

3 Difficulties in Estimating Production Function Elas-
ticities when Firms have Market Power

In Section 2, we established that when using the ratio estimator to estimate markups, it
is critical to use the output elasticity with respect to a flexible input in the numerator,
rather than the revenue elasticity. In this section, we highlight several difficulties that arise
when attempting to estimate the required output elasticity when firms have market power.
We also note that it is not straightforward to obtain consistent estimates of the revenue
elasticity, particularly if there is unobserved heterogeneity across firms in markups.

3.1 Estimation of the Output Elasticity for a Flexible Input

We start in Section 3.1.1 by considering the case in which the researcher observes only
revenue, and does not have separate information on the price and quantity of output.
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We show that in this case the output elasticity for a flexible input is not identified non-
parametrically from estimation of the revenue production function. There exist parametric
restrictions on the forms of the quantity production function and the inverse demand curve
under which the output elasticity for a flexible input may be estimated consistently at one
point in the parameter space, but these special cases appear to be of limited empirical
relevance.

In Section 3.1.2 we then consider the case in which the researcher observes both revenue
and the output price for individual firms, or equivalently has data on output quantities. In
this case the output elasticity for a flexible input is identified under reasonable conditions if
there is no measurement error in the data on output, or if total factor productivity follows a
linear ARMA process. In these cases, output elasticities can be estimated consistently using
moment conditions for the quantity production function of the kind suggested by Blundell
and Bond (2000).

Even with output quantity data, consistent estimation of the output elasticity for a flex-
ible input is more challenging if output is measured with error and total factor productivity
follows a non-linear process. Two stage estimators, of the type suggested by Ackerberg et al.
(2015) for the estimation of value added production functions for price-taking firms, have
often been used in this context.3 The measurement error in observed output is eliminated
using a first stage regression, which allows non-linear dynamic processes for unobserved
total factor productivity to be considered in the second stage. The first stage specification
requires a valid control function for total factor productivity, which is obtained by inverting
a demand function for the flexible input in which total factor productivity is the only un-
observed component. This approach cannot be used if the demand curves are firm-specific
and there is some unobserved heterogeneity across firms in a demand shifter, as well as in
total factor productivity, unless the researcher can also control for variation across firms in
marginal costs.4

In Section 3.1.3 we consider the case in which the researcher observes both revenue
and a firm-specific output price index, but does not have data on output price levels for
individual firms. Deflating revenue using the firm-specific output price index results in a
measure of output which differs from the true level of output by an unknown multiplicative
constant, reflecting differences across firms in output prices in the base year. In logarithmic
specifications, this measurement error can be accounted for by firm-specific fixed effects, but
obtaining consistent estimates of output elasticities then requires these fixed effects to be
taken into account. This also violates the scalar unobservability condition needed to obtain
a valid control function for unobserved total factor productivity in the first stage of the two

3See, for example, De Loecker and Warzynski (2012) and De Loecker et al. (2020).
4This point has also been made in a recent paper by Doraszelski and Jaumandreu (2019).
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stage estimation procedures that are often used in this setting. The presence of unobserved
firm-specific fixed effects can however be handled if total factor productivity follows a linear
ARMA process, using the kind of dynamic panel data estimator for production functions
suggested by Blundell and Bond (2000).

3.1.1 Data on Revenue

In this section we consider a three factor Hicks-neutral gross output production function
for firm i in period t of the form

qit = f(kit, lit,mit) + ωit (6)

in which qit is the log of gross output, kit, lit and mit are the logs of observed capital,
labor and intermediate inputs respectively, and ωit is the log of total factor productivity,
which is observed by the firm but not by the researcher. We treat capital and labor as
predetermined inputs, for which the input levels are chosen before the firm has observed
ωit.5 We assume that the level of intermediate inputs is chosen after the firm has observed
ωit, and that intermediate inputs do not incur adjustment costs of any kind; that is, we
consider intermediate inputs as our example of an input which is flexible in the sense required
to construct the ratio estimator of the markup. The object of interest is thus the output
elasticity εQMit := ∂qit/∂mit.

The researcher observes neither gross output nor the output price, but only sales revenue
or the value of gross output, the log of which is rit := pit + qit.6 To analyze this further, we
assume that each firm faces a downward-sloping inverse demand curve of the form

pit = p(qit, ξit) (7)

in which ξit is a demand shifter, which is observed by the firm and may be observed or
unobserved by the researcher.

The revenue production function which can be estimated in this setting relates the log
of observed revenue to the logs of the observed inputs

rit = (pit + qit) = f(kit, lit,mit) + (pit + ωit) (8)
5The predetermined inputs may also be subject to adjustment costs. If so, these adjustment costs do

not take the form of foregone production, and do not depend on the level of intermediate inputs in any
time period.

6We abstract here from any difference between sales revenue and the value of production, due to changes
in inventories.
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The dependence of intermediate inputs (mit) on unobserved total factor productivity (ωit)
raises issues for the consistent estimation of the output elasticity εQMit from the quantity
production function (6) that are well known in the context of price-taking firms; we discuss
some additional issues which arise when firms have market power in section 3.1.2 below.

The presence of the output price (pit) in the error term of the revenue production
function (8) raises more fundamental issues when firms have market power, and their output
price depends on qit from (7), and hence on each of the inputs. This additional source of
inconsistency has been analyzed by Klette and Griliches (1996) and termed the ‘omitted
price bias’. Our contribution here is to show that if the output price and the level of
the flexible input are chosen at the same time to maximize the same objective, then the
output elasticity εQMit is not identified non-parametrically from estimation of the revenue
production function (8).

The intuition for this result is straightforward in the special case in which all firms face
the same inverse demand curve, and we have only common shocks (ξit = ξt for all i) in (7).
In this case, with observations on (pit, qit) constrained to lie along this downward-sloping
demand curve, any firm-specific shock which increases mit and hence qit also reduces pit.
In other words, any informative instrument for mit is correlated with pit and so not a valid
instrument in the revenue production function (8). With heterogeneity across firms in the
inverse demand curves, the same still applies, except in special cases in which there is
no pass through of demand shocks (ξit) on to the output price. In these special cases, if
informative proxies for the demand shifter are observed by the researcher, and these are
uncorrelated with ωit, then these would provide valid and informative instruments for mit in
(8). However, the special cases with zero pass through of demand shocks on to the output
price require strong parametric restrictions on the form of both the quantity production
function (6) and the inverse demand curve (7), such that at best the output elasticity is
identified only at one point in the parameter space.

To illustrate this, we assume that the firm chooses its output price (Pit) and level of inter-
mediate inputs (Mit) to maximize profits in period t, taking the costs of the predetermined
inputs as given, or equivalently to maximize revenue net of variable costs

Π(kit, lit;ωit, ξit, p
M
it ) := Pit(Qit)Qit − PM

it Mit (9)

where PM
it is the price of one unit of intermediate inputs for firm i in period t, pMit is the log

of this price, and we assume that the firm takes this input price as given; the input price is
observed by the firm, and may be observed or unobserved by the researcher.

The solution equates marginal revenue and marginal variable cost. We can either find
the level of intermediate inputs which maximizes net revenue in period t and infer the output
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price from the inverse demand curve at the resulting level of output, or we can find the
output price and quantity which maximize net revenue in period t and infer the required
level of intermediate inputs. In either case, we obtain decision rules or policy functions
which express both Mit and Pit as functions of the same state variables (kit, lit) and the
same primitives (ωit, ξit, p

M
it ):

mit = gm(kit, lit;ωit, ξit, p
M
it ) (10)

pit = gp(kit, lit;ωit, ξit, p
M
it )

These decision rules then indicate that any informative instrument for mit in (8) will nec-
essarily be correlated with the pit component of the error term, while any instrument that
is uncorrelated with pit will not be an informative instrument for mit. Equivalently, if we
were able to control adequately for the pit component of the error term in (8) we would
have exhausted all the sources of variation in the explanatory variable mit. The explana-
tory variable mit and the error component pit are ‘functionally dependent’ in the sense of
Ackerberg et al. (2015). Without parametric restrictions, we cannot separately identify the
contributions of mit and pit to the log of observed revenue rit.7

In this context, variation in the input price pMit shifts the marginal variable cost sched-
ule; if the demand and marginal revenue schedules are downward-sloping, this variation
necessarily also affects the output price. As a result, there are no parametric restrictions
that lead to the exclusion of pMit from the decision rule for the output price in (10). The
demand shocks ξit shift the marginal revenue schedule, and there are admissible parametric
restrictions under which there is zero pass through of the demand shocks on to the output
price. This would be the case if we have both constant marginal variable cost and the
markup does not depend on the level of output.

For example, we may have a Cobb-Douglas gross output production function with in-
creasing returns to scale and a unit output elasticity for the flexible input, and a Constant
Elasticity of Substitution demand curve for each firm.8 In this case, the demand shocks ξit
affect the level of intermediate inputs but not the output price, and observed proxies for
the demand shocks would provide valid and informative instruments for mit in a log-linear
version of (8), provided they are also uncorrelated with ωit. This requires heterogeneity
across firms in the inverse demand curves, and the output elasticity for the flexible input

7The dependence of the output price on the predetermined inputs also indicates that when firms have
market power, we do not have moment conditions of the form E[(pit + ωit)|kit, lit] = 0, versions of which
have typically been used in the estimation of revenue production functions.

8That is, we have a gross output production function of the form qit = βKkit + βLlit + βMmit + ωit
with βM = εQM = 1 and returns to scale ν = βK + βL + 1 > 1; and an inverse demand curve of the form
pit = ξit − η−1qit where η−1 = −εPQ > 0.
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is identified only at one point (εQM = 1) in the parameter space. This requirement for the
output elasticity to be unity here suggests that these parametric special cases are likely to
be of limited empirical relevance. Moreover, since identification here relies on shifts in the
demand curve, and shifts in the demand curve would affect the demand for two or more
flexible inputs in the same way, the parametric special cases in which this approach could
be applied are limited to specifications with a single flexible input, as in the example that
we have considered here.

3.1.2 Data on Revenue and Output Price Levels

Our result in the previous section indicates that, when firms have market power, data on
firm-level output prices is fundamental to obtaining credible estimates of the output elas-
ticity for a flexible input from estimation of a production function. Here we show that even
with a quantity measure of output, it is still challenging to estimate this output elastic-
ity consistently, particularly if output is measured with error and total factor productivity
follows a non-linear dynamic process.

To simplify the exposition, we now focus on a Cobb-Douglas gross output production
function, although the issues we highlight apply for any continuously differentiable gross
output production function (see Appendix C for details). We further assume that gross
output is measured with a multiplicative error, such that the log of observed output is
yit := qit + εit, where εit is a mean zero measurement error. The quantity production
function to be estimated then has the form

yit = βKkit + βLlit + βMmit + (ωit + εit) (11)

For simplicity, we choose units such that the mean of ωit is also zero. We assume that
the measurement error εit is uncorrelated with the observed inputs (kis, lis,mis) and with
the input price pMis for any s, t, and is independent across firms.9 The slope parameters
(βK , βL, βM) are the output elasticities, which are assumed to be constant over time and
common to all the firms in the sample. Our parameter of interest here is the output elasticity
βM = εQM .

We again assume that the firm chooses the level of intermediate inputs to maximize net
revenue in (9), taking the input price as given. Without specifying the form of the inverse

9An alternative interpretation of the two error components in (11) is that ωit denotes the log of the
component of total factor productivity that is known by the firm when making input decisions in period t,
and εit denotes the log of an unforecastable productivity shock that is not known by the firm when making
input decisions in period t. The presence of the second component (εit) of the error term here is more
important than the particular way we introduce it.
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demand curve (7), we show in Appendix C that the optimal choice of intermediate inputs
satisfies the first order condition

mit =
ln βM

1− βM
+

(
βK

1− βM

)
kit +

(
βL

1− βM

)
lit +

(
1

1− βM

)(
pit − lnµit − pMit + ωit

)
(12)

where µit is the markup of price over marginal cost as in Section 2, and we can note that
zit := pit − lnµit is the log of marginal cost. The only restriction that we place on the
demand curve here is that the output price pit is a weakly decreasing function of gross
output qit.

We assume that total factor productivity ωit is independent across firms, and start by
considering the special case in which ωit is serially uncorrelated; extensions to more realistic
cases in which the unobserved heterogeneity across firms in productivity is persistent over
time will be considered below. We consider a setting in which panel data is observed for
a large number of firms for a small number of time periods, and asymptotic properties are
stated for the case in which the number of firms increases, with the number of time periods
treated as fixed.

Under these assumptions, we have the moment conditions E[(kit, lit)uit] = 0 where uit :=

ωit + εit is the error term in (11). If the researcher has data on the input price pMit , and if
these input prices vary across firms in a way that is uncorrelated with ωit, then the price of
the flexible input provides a valid and informative instrument for the explanatory variable
mit in (11). In that case we have the additional moment condition E[pMit uit] = 0, and the
parameter vector (βK , βL, βM) is identified from the estimation of the quantity production
function (11).

If the researcher does not have data on the price of the flexible input, the parameter
vector (βK , βL, βM) will still be identified here if either: (i) there is variation across firms in
the input price pMit which is persistent over time; or (ii) there is variation across firms in the
demand shifter ξit which is persistent over time and results in persistent variation in the log
of marginal cost zit. With persistent variation in either pMit or zit, the first order condition
(12) implies that the lagged input mi,t−1 provides a valid and informative instrument for
the explanatory variable mit in (11), and in this case we have the additional (informative)
moment condition E[mi,t−1uit] = 0.10

For price-taking firms, it is well known that identification of the output elasticity for a
10We assume here that the researcher does not observe the demand shifter. If the researcher observes ξit,

and ξit varies across firms in a way which is uncorrelated with ωit, then ξit could be used as an instrument
for mit in (11), and we would not require the variation across firms in ξit to be persistent. The same would
apply if the researcher observes an informative proxy for ξit that is uncorrelated with ωit.
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flexible input from estimation of the quantity production function requires variation across
firms in the price of the flexible input.11 For firms with market power and a single flexible
input, persistent variation across firms in demand provides a second mechanism through
which the lagged input may be an informative instrument. This could be useful in appli-
cations where the researcher has data on expenditure on the flexible input, but does not
have firm-level data on the price of the flexible input. Expenditure on the flexible input,
deflated using a common price index, provides a suitable measure of the input quantity only
if the input price does not vary across firms. This requirement rules out identification of
the output elasticity from estimation of the production function for price-taking firms, but
may not do so when firms have market power.

We now extend our discussion to consider more realistic cases in which the variation
across firms in unobserved total factor productivity is persistent over time, distinguishing
between the cases in which ωit follows linear and non-linear dynamic processes. In both
cases the dynamic process for ωit has to be correctly specified by the researcher.

Linear TFP processes

The moment conditions discussed above extend straightforwardly to cases in which ωit
follows a low order ARMA process. Suppose, for example, that ωit follows an AR(1) process

ωit = ρωi,t−1 + υit (13)

with |ρ| < 1, in which the productivity innovations υit are independent across firms and
serially uncorrelated. Substituting for ωit in (13) from (11), and similarly for ωi,t−1, results
in a quasi-differenced representation of the quantity production function in which the error
term is now uit := υit + εit − ρεi,t−1. Here we still have moment conditions of the form
E[(kis, lis)uit] = 0 for s 6 t. If the researcher has data on the input price, and the input price
is uncorrelated with ωit, we have additional moment conditions E[pMis uit] = 0 for s 6 t. If
the researcher does not have data on the input price, but we have persistent variation across
firms in either pMit or ξit, we have additional (informative) moment conditions E[misuit] = 0

for s 6 t− 1. If the measurement error εit is serially uncorrelated, we also have additional
moment conditions E[yisuit] = 0 for s 6 t − 2.12 These moment conditions can be used to
estimate the parameter vector (βK , βL, βM , ρ) consistently in the quasi-differenced quantity
production function, following the approach suggested by Blundell and Bond (2000).

Non-linear TFP processes
11See Bond and Söderbom (2005), Ackerberg et al. (2015) and Gandhi et al. (2020).
12This restriction follows naturally if the εit component of the error term in (11) is interpreted as a shock

to productivity that is not known by the firm when making input decisions in period t.
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The same approach could be used with non-linear processes for ωit if gross output is
measured without error and ωit is the only component of the error term in the quantity pro-
duction function (11). Otherwise, if we replace the linear function ρωi,t−1 on the right-hand
side of (13) by a non-linear function φ(ωi,t−1), the presence of the unobserved εi,t−1 inside
this non-linear function when we substitute for ωi,t−1 using (11) will invalidate moment
conditions of the kind considered in the previous sub-section.

Here we still have moment conditions of the form E[(kis, lis)υit] = 0 for s 6 t and,
for example, E[misυit] = 0 for s 6 t − 1. To exploit these moment conditions, we first
need to eliminate the measurement error component εit from the error term of the quantity
production function (11), before we substitute for ωi,t−1 in the non-linear function φ(ωi,t−1).

A two stage estimation procedure of this kind was proposed by Ackerberg et al. (2015)
for the estimation of a value added production function for price-taking firms, and with no
flexible inputs. Similar two stage estimators are commonly used in the empirical literature
that uses the ratio estimator to study markups.13 However, there seem to be problems in
applying this approach to the estimation of a gross output production function when firms
have market power and there is unobserved heterogeneity across firms in the demand shifter
ξit.

The first stage of these two stage procedures relies on having a valid control function
which expresses the unobserved ωit in (11) as a function of observed variables. This is
obtained by expressing the firm’s optimal choice of the flexible input mit as a function of
observed variables and the single unobserved component ωit. We also require that this
function is strictly monotonic in ωit, so that it can be inverted to provide the control
function. A (possibly non-parametric) regression of yit on the observed inputs and any
additional observed variables included in the control function then has the error term εit.
The predicted values of yit from the estimated first stage regression can then be used in place
of the actual values of yit when we substitute for ωit and ωi,t−1 in the specified non-linear
dynamic process.

The question here is whether we can find a valid control function of this form in settings
where we also have informative instruments formit in the second stage of this procedure. We
can express the optimal choice of the flexible input as a functionmit = m(kit, lit, zit, p

M
it , ωit),

as illustrated in (12) for the Cobb-Douglas gross output production function. First suppose
that the researcher has data on pMit and all firms face the same demand curve (ξit = ξt for all
i). Time dummies (dt) can then be used to control for the common demand shocks. In this
case we can express zit = z(kit, lit, p

M
it , dt, ωit) and hence we can express mit as a function of

the observed predetermined inputs, the price of the flexible input, time dummies, and the
13See, for example, De Loecker and Warzynski (2012) and De Loecker et al. (2020).
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scalar unobservable ωit. We can invert this function to obtain the valid control function
ωit = h(kit, lit,mit, p

M
it , dt) which can be used in the first stage regression. If the variation

in pMit is uncorrelated with ωit, we can also use the observed input prices as instruments
for mit in the second stage specification; that is, we have valid and informative moment
conditions of the form E[pMis υit] = 0 for s 6 t. If the variation in pMit is correlated with
ωit but persistent over time, we can instead use lagged intermediate inputs as instruments
for mit in the second stage specification; that is, we have valid and informative moment
conditions of the form E[misυit] = 0 for s 6 t− 1. Notice that with no heterogeneity across
firms in the demand shifter, we require persistent variation across firms in the input price
here; with firm-level data on the input price, this condition can be checked.

Now suppose that the researcher has data on pMit and there is variation across firms in
the demand shifter which is not perfectly observed by the researcher (i.e. there is some
unobserved heterogeneity across firms in ξit). In this case zit will additionally depend on
the unobserved component of the demand shifter, and we can no longer express mit as
a function of observed variables and the scalar unobservable ωit. We can still invert the
function mit = m(kit, lit, zit, p

M
it , ωit) to obtain ωit = h(kit, lit,mit, zit, p

M
it ), but to make use

of this control function in the first stage regression the researcher would need to be able
to control for variation in the log of marginal cost zit.14 Otherwise, with market power
and unobserved heterogeneity in demand, we cannot allow for non-linearity in the dynamic
process for total factor productivity using a two stage procedure of this type, even with
firm-level data on the price of the flexible input.15

3.1.3 Data on Revenue and Output Price Indices

The previous section considered the case in which the researcher has data on both sales
revenue and the level of the output price for individual firms. An intermediate possibility
is that the researcher observes an output price index for individual firms, constructed from
survey questions about yearly price changes, but does not observe firm-specific price levels
in the base year.

If we use these firm-specific output price indices to deflate the value of output in current
14This has also been noted by Doraszelski and Jaumandreu (2019) in a more general setting than our

example here.
15The situation is no better if the researcher does not have data on the price of the flexible input.

To obtain a valid control function for ωit in the first stage regression, we then require no unobserved
heterogeneity across firms in ξit and no variation across firms in pMit . Observed variation in the demand
shifter ξit would then be needed to provide informative instruments formit in the second stage specification,
and this approach could not be used in a specification with two or more flexible inputs.
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prices, we obtain

Pi0Qit = (PitQit)×
(
Pit
Pi0

)
where (Pit/Pi0) is the firm-specific price index, equal to one in the base period t = 0, and
Pi0 is the unobserved price of output for firm i in that period.

This deflated measure of revenue measures the true level of outputQit up to the unknown
multiplicative constant Pi0, reflecting unobserved differences across firms in the price of
output in the base year. In a logarithmic specification, this will introduce firm-specific
intercepts. For example, for the Cobb-Douglas gross output production function considered
in the previous section, we obtain from (11)

(pi0 + yit) = pi0 + βKkit + βLlit + βMmit + (ωit + εit) (14)

where again yit = qit + εit, and εit allows for transient measurement error. Persistent
differences across firms in the level of the output price will be correlated with input choices,
so in the panel data sense these firm-specific intercepts will need to be treated as ‘fixed
effects’ (i.e. correlated with the explanatory variables) rather than ‘random effects’ (i.e.
uncorrelated with the explanatory variables).16

In the case where the unobserved total factor productivity component of the error term
ωit follows a low order ARMA process, the ‘dynamic panel data’ estimator for production
functions proposed by Blundell and Bond (2000) can accommodate unobserved firm-specific
fixed effects of this form. This allows consistent estimation of the output elasticity param-
eters (βK , βL, βM) provided that ωit follows a linear process and either: (i) we have data
on pMit , and the input price is uncorrelated with ωit; or (ii) there is persistent variation in
either pMit or ξit, such that lagged inputs provide valid and informative instruments for mit.
The key point here is that estimation will need to allow for fixed effects if the researcher
does not have firm-level data on output price levels.

The two stage estimators which have been developed to allow for non-linear dynamics
in ωit typically rule out unobserved firm-specific fixed effects. Constructing a valid control
function in the first stage specification requires that we can express mit as a function of the
scalar unobservable component ωit, and this condition is violated if we have an additional
source of unobserved heterogeneity. Consistent estimation of the first stage specification
using least squares methods further requires that the included explanatory variables are
uncorrelated with the remaining error term after eliminating the ωit component. In the
Cobb-Douglas special case, it may be possible to construct a valid control function for ∆ωit

16A similar issue arises if we use an expenditure measure of one or more of the inputs, deflated using a
firm-specific input price index, and there is variation across firms in the level of the input price.
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and then apply a two stage procedure to equations in first-differences. Given the highly
persistent nature of most data on inputs and output, relying exclusively on equations in
first-differences may not be attractive. More generally, it is not clear how to allow for
firm-specific intercepts in the estimation of production functions if we wish to allow for
non-linear dynamics in the total factor productivity component of the error term.

3.2 Estimation of the Revenue Elasticity for a Flexible Input

In Section 3.1 we showed that the output elasticity for a flexible input is not identified
from estimation of the revenue production function without strong parametric restrictions
on the forms of both the gross output production function and the inverse demand curve.
The availability of firm-level data on output prices is thus fundamental to obtaining cred-
ible estimates of output elasticities from the estimation of a production function. Even
with output price data for individual firms, the output elasticity for a flexible input may
not be identified if there is unobserved heterogeneity across firms in the demand schedules,
or if only firm-specific output price indices are available, and the log of unobserved total
factor productivity follows a non-linear dynamic process. In this section, we briefly con-
sider conditions under which the revenue elasticity for a flexible input can be estimated
consistently.

A useful starting point is the case considered by Klette and Griliches (1996), with a
Cobb-Douglas gross output production function (11) and a Constant Elasticity of Substi-
tution inverse demand curve

pit = δt − η−1qit + ζit (15)

in which we have decomposed the demand shifter ξit into common and idiosyncratic com-
ponents, such that ξit = δt + ζit. Here η > 1 is the absolute value of the price elasticity of
demand, i.e. we have η = −ε−1PQ. The revenue production function in this case is

roit = (pit + yit) = βKkit + βLlit + βMmit + (pit + ωit + εit) (16)

where the log of observed revenue roit := rit + εit differs from the log of true revenue rit by
the additive measurement error component εit.

Substituting for the unobserved output price pit in the error term of (16) from the inverse
demand curve (15), we obtain the log-linear equation

roit = δt +

(
βK
µ

)
kit +

(
βL
µ

)
lit +

(
βM
µ

)
mit +

[(
1

µ

)
ωit + εit + ζit

]
(17)
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which relates observed revenue to the observed inputs. Here µ =
(

1− 1
η

)−1
> 1 is the

markup of price over marginal cost, and the slope parameters are the revenue elasticities.
The error term contains the idiosyncratic demand shock ζit, in addition to total factor
productivity ωit and the measurement error εit.

The revenue elasticity parameters in (17) can then be estimated consistently using the
methods discussed in Section 3.1.2, subject to the limitations that we have noted. For
example, if the three components of the error term uit :=

(
1
µ

)
ωit + εit + ζit are assumed

to be serially uncorrelated, we have moment conditions E[(kit, lit)uit] = 0. With persistent
variation across firms in the input price pMit , the lagged input mi,t−1 provides a valid and
informative instrument for mit, and we have the additional (informative) moment condition
E[mi,t−1uit] = 0. This extends straightforwardly to cases in which ωit follows a low order
ARMA process, although not to cases in which ωit follows a non-linear dynamic process (if
we do indeed have both unobserved idiosyncratic demand shocks and measurement error).

In cases where we can estimate these revenue elasticity parameters consistently, we
could investigate heterogeneity in the markup parameter µ across sub-samples of firms by
including suitable interaction terms in (17), under the maintained assumption that the
output elasticities are common to these sub-samples.17

This example also highlights potential problems with estimating the revenue elasticities
consistently. Consistent estimation in the example considered above required the researcher
to observe a quantity measure of the flexible input.18 More generally, consistent estimation
may be difficult if the sum

(
1
µ

)
ωit + ζit does not follow a low order ARMA process; for

example, if both ωit and ζit follow AR(1) processes, as in (13), but with different autoregres-
sive parameters (ρ). Consistent estimation may also be difficult if the markup parameter
µ is not common within sub-samples of firms. The moment conditions that are typically
used to estimate production functions will not be valid if there is unmodeled heterogeneity
in the slope parameters in (17).19 Finally, consistent estimation of the revenue elasticities

17For example, we could investigate if the revenue elasticity parameters take different values for exporting
and non-exporting firms, as in De Loecker and Warzynski (2012).

18If the researcher only has data on expenditure on the flexible input, the assumption that the price of
the flexible input does not vary across firms then implies that the lagged input is not an informative instru-
ment for the current input, given the levels of the predetermined inputs kit and lit, under the maintained
assumptions that ωit and ζit are both serially uncorrelated; see (12).

19In the model yit = βxit + uit with E(uit) = 0 and E(xituit) 6= 0, we can obtain consistent estimators
of β if E(xi,t−1uit) = 0 and xi,t−1 is also an informative instrument for xit. With heterogeneity across
firms in the slope parameter, we have yit = βixit + uit = βxit + uit + (βi − β)xit = βxit + eit, with
eit := uit + (βi−β)xit. If the explanatory variable is serially correlated, we then have E(xi,t−1eit) 6= 0, and
standard estimators do not estimate β consistently. With time-invariant heterogeneity of this form, the βi
coefficients (and hence β) could be estimated consistently if panel data is available for a large number of
time periods. See Pesaran and Smith (1995) for further discussion.
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is likely to be more difficult if the gross output production function and inverse demand
curve do not take the convenient log-linear forms that we have considered in this section.

4 Conclusion

Our objective with this note is to encourage others to exercise caution when drawing in-
ferences from firm-level markup estimates based on the production function approach. We
have shown that whenever a revenue elasticity is used in place of an output elasticity, at
least under monopolistic competition, the commonly-used ratio estimator does not contain
any useful information about markups. We are not aware of any procedures that would al-
low one to recover markups from revenue data alone, without imposing additional structure
from the demand side of the market. We have also shown that violation of the widespread
assumption that firms do not use inputs to influence their demand curves leads to an addi-
tional downward bias in the ratio estimator of markups. Since labor is used both to produce
output and to influence demand, this suggests that labor should not be used as part of the
input bundle when estimating markups. More generally, the assumption that any input
bundle that contains a variable input can be used in the ratio estimator is too weak: it is
also important that the input bundle does not contain any input that is used to influence
demand.

Where does that leave us in terms of estimating firm-level markups? One possibility is
to keep searching for reliable measures of changes in both price and quantity at the level at
which one desires to estimate markups. This is the approach taken by Foster et al. (2008)
for a small number of US manufacturing industries, and by Forlani et al. (2019) for Belgian
manufacturing sectors in which units are well-defined. Another possibility is to estimate
markups by estimating the demand elasticity directly, as in De Loecker (2011).

A third possibility is to give up on estimating the level of markups and focus on esti-
mating the difference in mean markups across groups of firms for which one is comfortable
with the assumption that they share the same production function parameters. This is
the essence of the approach we outline in Appendix D. We show that for some questions
about markups, one can work directly with the cost share in revenue of a variable input,
and it is not necessary to use the ratio estimator. An example is the exercise in De Loecker
and Warzynski (2012), in which they compare markups across exporters and non-exporters,
provided one is willing to assume that production function elasticities do not vary system-
atically with export-status. However, this approach is not well suited to studying trends in
markups.
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Online Appendices

A Input adjustment costs

We consider the same firm problem from Section 2 but we now assume that each input i is associated
with a baseline quantity Xi and that the firm incurs adjustment costs when it chooses a quantity of input
Xi 6= Xi. The baseline quantity Xi might reflect the input choice from the previous period in a dynamic
version of the model. For simplicity, we assume that these costs are given by the smooth convex function
κi (Xi), which satisfies κi

(
Xi

)
= κ′i

(
Xi

)
= 0.

The firm’s cost function is now given by

C (Q) := min
Xi

∑
i

XiWi +
∑
i

κi (Xi)Wi (18)

subject to
Q ≤FQ (X1, X2, . . . )

where we have normalized the adjustment cost functions by the input price Wi. Following the same steps
as in the previous section, we obtain the FOC

Wi +Wiκ
′
i (Xi) = λ

∂

∂Xi
FQ (Xi) ∀ i

WiXi

PQ

[
1 +

κ′i (Xi)

Xi

]
=
λ

P
εQ,Xi

Using sR,Xi to denote the share of input i’s cost in revenue and using the envelope condition, this implies

sR,Xi

[
1 +

κ′i (Xi)

Xi

]
=
C ′ (Q)

P
εQ,Xi . (19)

Hence the ratio estimator using the revenue elasticity recovers

µ̂R =
εR,Xi
sR,Xi

= 1 +
κ′i (Xi)

Xi
,

and the ratio estimator using the output elasticity recovers

µ̂Q =
εQ,Xi
sR,Xi

= µ

[
1 +

κ′i (Xi)

Xi

]
.

Why might it be more common to estimate µ̂R > 1 than µ̂R < 1 when using firm-level data? One
hypothesis is that adjustment costs are asymmetrical. It is less costly to use less of an input than previously
planned than to use more of an input. If this is the case then on average we would recover µ̂R > 1. Similarly
if firms are growing on average we would recover µ̂R > 1 on average.

The argument above effectively assumes that observed input costs are WiXi rather than WiXi +
Wiκi (Xi). If this is the measure of observed input costs then

sR,Xi =
WiXi +Wiκi (Xi)

PQ
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and we obtain

WiXi +Wiκ
′
i (Xi)

PQ
=
λ

P
εQ,Xi

µ̂Q =
εQ,Xi
sR,Xi

= µ

(
Xi + κ′i (Xi)

Xi + κi (Xi)

)
so wedge > 1 whenever κ′ > κ.

Neither of the two cases that are typically considered in the literature lead to a bias. The variable input
case is κi = 0, in which case the bias disappears. The fixed input case is one in which Xi → Xi in which
case the bias also disappears. (Note, however that the fixed input case is not the limit as κi →∞, and so is
not a special case of the model with adjustment cost model. When κi →∞ in the adjustment cost model,
the bias remains even in the limit, even though Xi → Xi).

B Inputs that influence demand

In this section we show that even if output elasticities are available, markup estimates are biased whenever
the variable factor of production is used partly to affect demand in addition to producing output.

We assume that the firm’s production function is as in Section 2, but that its revenue is now given by

R = P (Q,D)Q

where D is a demand shifter. The firm can influence the level of demand through the use of inputs according
to the function

D = FD (X1D, X2D, . . . ) .

We denote the amount of input i used in production as XiQ and the amount used in influencing demand
as XiD. The total quantity of input i used by the firm is Xi = XiD +XiQ.

The profit maximization problem of the firm is now

Π = max
Q,D

P (Q,D)Q− CQ (Q)− CD (D) (20)

where CQ (Q) is the firm’s cost function for producing output, defined by

CQ (Q) := min
XiY

∑
i

XiYWi (21)

subject to
Q ≤FQ (X1Q, X2Q, . . . )

and CD (D) is the firm’s cost function for influencing demand, defined by

CD (D) := min
XiD

∑
i

XiDWi (22)

subject to
D ≤FD (X1D, X2D, . . . )
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The optimality conditions from the profit maximization problem (20) are

εP,Q + 1 =
C ′Q (Q)

P
(23)

εP,D =
C ′D (D)D

PQ
(24)

where εP,D describes the effect of the demand shifter on the price that a firm can charge for a given
quantity of output. As in the previous section, the optimal markup of price over marginal production cost

is µ :=
[
C′
Q(Q)

P

]−1
= (1 + εP,Q)

−1.

The FOC for the production cost minimization problem (21) yields the relationship

sR,XiQ =
C ′Q (Q)

P
εQ,XiQ (25)

where sR,XiQ is the share of revenue paid to input i for use in producing output, and εQ,XiQ is the elasticity
of output to the use of input i for production. It follows from equation (25) that if one could observe XiQ

separately from Xi then the ratio estimator would correctly recover the markup.

However, in practice we observe only the total usage of an input Xi = XiQ + XiD, rather then the
usage in different activities separately. Using the FOC for the cost minimization problem for influencing
demand (22) yields the relationship

sR,XiD =
C ′D (D)D

PQ
εD,XiD (26)

Combining (23),(24), (25) and (26) yields an expression for the total revenue share of input Xi

sR,Xi = (1 + εP,Q) εQ,XiQ + εP,DεD,XiD (27)

To see what the ratio estimator recovers, note that the optimality condition for allocating an input Xi

between producing goods XiQ and influencing demand XiD implies

εQ,Xi = εQ,XiQεXiQ,Xi + εQ,XiDεXiD,Xi = εQ,XiQεXiQ,Xi (28)

This means that in order to correctly recover the output elasticity of an inputXi, it is necessary to separately
observe the part of that input that is actually used in producing goods as long as εXiQ,Xi 6= 1. The fact that
a firm uses inputs partly to influence demand introduces a bias into the estimate of the output elasticity.
It also introduces a bias into the estimate of the markup. Combining (27) and (28) reveals that the ratio
estimator is given by

µ̂Q = µ
εXiQ,Xi

1 + XiD
XiQ

There are however special cases in which εXiQ,Xi = 1, i.e. the share of Xi in production and in
influencing demand does not depend on the level of Xi. For example it is sufficient that the firm faces an
isoelastic demand curve and FQ and FD are Cobb-Douglas. If this is the case, there is no bias the estimate
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of the output elasticity, but the ratio estimator is still biased. 20

µ̂Q = µ
1

1 + XiD
XiQ

.

So if the variable input is only used for production and not to influence demand (XiD = 0) then the ratio
estimator recovers the markup. But if some of the input is used to influence demand, and this component
is not separated out, then the ratio estimator will be biased downward. If, over time, the input Xi is
increasingly being used to influence demand, then the ratio estimator will fall over time, without any
change in the true markup.

Casual observation suggests that at least some part of the workforce currently employed in the corporate
sector devotes its energy to influencing demand rather than to producing goods. This suggests that using
labor as an input for estimating markups will yield estimates that are hard to interpret. When using
the ratio estimator, heterogeneity across firms and industries in the extent to which they use labor for
production versus marketing and sales-related expenses will thus manifest as heterogeneity in measured
markups.

These observations also help shed light on the difference in the trend in markups that one obtains from
Compustat data on US firms when one uses only COGS versus when one includes SGA as the variable input
(De Loecker et al. (2020); Traina (2018); De Loecker and Eeckhout (2018)). It seems reasonable to assume
that in the COGS bundle, a larger fraction of the inputs is used to produce output and a smaller fraction
is used to influence demand, than in the SGA bundle. Thus the downward bias in the ratio estimator is
likely to be larger when including SGA in the bundle of variable inputs, versus when using only COGS.
Since the cost share of SGA in total revenue has been increasing relative to the cost share of COGS in total
revenue, this will manifest as a widening gap between the ratio estimator that uses only COGS and the
ratio estimator that also includes SGA. This is precisely what the literature has found.

So far in this section we have proceeded as if output were observed. If only revenue were observed, as
in Section 2.1, then the ratio estimator again recovers µ̂R = 1, regardless of whether the input is being used
for production or to influence demand. Given that Compustat data contains only revenue, not output, the
aforementioned discussion is relevant only if one believes that the procedures in those papers do successfully
recover output elasticities, which we believe they do not.

C Optimal input demand functions

This appendix supplies the derivation of the optimal input demand equation for intermediate inputs under
two technology specifications. Section C.1 provides the derivation for a Cobb-Douglas technology and
Section C.2 provides that for a nonparametric technology.

C.1 Cobb-Douglas

The three-factor Cobb-Douglas production function for gross output Qit, with Hicks-neutral productivity
ωit, is

Qit = KβK
it L

βL
it M

βM
it exp (ωit)

20This result does not require that XiD and XiQ are perfect substitutes, but it does require that they
satisfy Xi = f (XiD, XiQ) where f is a constant-returns-to-scale function. Thanks to Agustin Gutierrez for
pointing this out.
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Since Mit is the single flexible input, the cost minimizing input demand for Mit can be obtained by
rearranging the Cobb-Douglas production function.

M∗it = M (Kit, Lit, Q
∗
it, ωit) = K

− βK
βM

it L
− βL
βM

it (Q∗it)
1
βM exp

(
− 1

βM
ωit

)
(29)

where Q∗it is the optimal output level that is taken as given in cost minimization. Then, the minimized
total variable cost function is

C
(
Kit, Lit, P

M
it , Q

∗
it, ωit

)
≡ PMit M (Kit, Lit, Q

∗
it, ωit) (30)

where PMit is the unit input price ofMit that firm i takes as given. Taking the demand system Pit = Pt (Qit),
where P ′t (Qit) ≤ 0, and the total cost function C

(
Kit, Lit, P

M
it , Q

∗
it, ωit

)
as given, firm i chooses Qit to

maximize its static profits.

max
Qit

{
Pt (Qit)Qit − C

(
Kit, Lit, P

M
it , Qit, ωit

)}
The first order condition in profit maximization equates marginal revenue to marginal cost.

Pt (Q∗it)

(
εP,Q (Q∗it)− 1

εP,Q (Q∗it)

)
= PMit

∂M (Kit, Lit, Q
∗
it, ωit)

∂Q∗it
(31)

where εP,Q (Qit) is the price elasticity of demand defined as

εP,Q (Qit) ≡ −
Pt (Qit)

P ′t (Qit)Qit

Equation (31) identifies the optimal markup function µ∗it = µt (Q∗it) under monopolistic competition in
terms of the demand elasticity.

µt (Q∗it) ≡ Pt (Q∗it)

(
PMit

∂M (Kit, Lit, Q
∗
it, ωit)

∂Q∗it

)−1
=

εP,Q (Q∗it)

εP,Q (Q∗it)− 1

Applying the functional form in equation (29) to the FOC in equation (31) and solving for q∗it = lnQ∗it gives

q∗it =
βM

1− βM
lnβM +

βk
1− βM

kit +
βl

1− βM
lit +

βM
1− βM

(
p∗it − lnµ∗it − pMit

)
+

1

1− βM
ωit (32)

where pMit ≡ lnPMit and p∗it ≡ lnPt (Q∗it). Using equation (32) to substitute for q∗it in equation (29) produces
the desired micro-founded optimal input demand equation formit in terms of the state variables (kit, lit, ωit),
the exogenous input price pMit , and the endogenous optimal output price p∗it and markup µ∗it.

m∗it =
lnβM

1− βM
+

βK
1− βM

kit +
βL

1− βM
lit +

1

1− βM
(
p∗it − lnµ∗it − pMit + ωit

)

C.2 Nonparametric technology

The nonparametric three-factor production function for gross output with productivity ωit is

Qit = Ft (Kit, Lit,Mit, ωit) (33)

The only restriction we impose on the function Ft (·) is that it is continuous and twice differentiable with
respect to its arguments. We index the function Ft (·) with a subscript t to allow for technological change
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over time. As in Section C.1, Mit is the single flexible input. Inverting equation (33) produces the cost-
minimizing input demand for Mit.

M∗it = F−1t (Kit, Lit, Q
∗
it, ωit) (34)

The minimized total variable cost function is

Ct
(
Kit, Lit, P

M
it , Q

∗
it, ωit

)
≡ PMit F−1t (Kit, Lit, Q

∗
it, ωit)

Given a demand system Pit = Pt (Qit), the first order condition in profit maximization is

P ∗it
µ∗it

= PMit
∂F−1t (Kit, Lit, Q

∗
it, ωit)

∂Q∗it
(35)

Given a functional form for Ft (·), equation (35) can be solved for the optimal output level Q∗it.

Q∗it = Qt
(
Kit, Lit, P

M
it , ωit, P

∗
it, µ

∗
it

)
(36)

Using equation (36) to substitute for Q∗it in equation (34) yields the micro-founded optimal input demand
function for intermediate inputs.

M∗it = F−1t

(
Kit, Lit,Qt

(
Kit, Lit, P

M
it , ωit, P

∗
it, µ

∗
it

)
, ωit

)
≡Mt

(
Kit, Lit, P

M
it , ωit, P

∗
it, µ

∗
it

)
In the absence of price data on inputs and outputs, the scalar unobservables in the input demand function
Mt (·) are

(
PMit , ωit, Pit, µit

)
.

D Learning about variation in markups from variation
in the cost share only

Without a way to estimate the output elasticity for a flexible input consistently from typical production
data, we cannot use the ratio estimator to learn about the level of price-cost markups. We can however still
use insights from the production approach to learn about variation in markups across firms. This variation
can be studied using a regression model for the log of the cost share in total revenue for a perfectly flexible
input. We sketch this ‘cost share approach’ to studying markups in this appendix.

As discussed in Section 2, the ratio estimator relies on the relationship µ =
εQ,Xi
sR,Xi

. Taking logs and
rearranging, we obviously have − ln sR,Xi = − ln εQ,Xi +lnµ. First consider the three factor, Cobb-Douglas
case in which intermediate inputs (M) is the perfectly flexible input, as discussed in Section 3. Here
ln sR,M = (pM + m) − (p + q) is the log of the true cost share in revenue for intermediate inputs, and
ln εQ,M = lnβM is a constant term. Letting ln sit = (pMit +mit)− (pit + yit) denote the log of the observed
cost share in revenue for firm i in period t, we then have

− ln sit = − lnβM + lnµit + εit (37)

where yit = qit + εit as before.21

Without a consistent estimate of the output elasticity (βM ), it is clear that the mean of the log of the
observed cost shares conflates the log of the output elasticity and the mean of the log of the price-cost

21For simplicity, we assume here that this is the only source of measurement error in the log of the observed
cost share in revenue. In the Cobb-Douglas case, we can easily allow for (multiplicative) measurement error
in both the numerator and the denominator of the cost share for intermediate inputs.

28



markups, and does not separately identify the latter. Nevertheless, under the maintained assumption that
the output elasticity is common to all the firm-year observations, we can use this relation to study variation
in price-cost markups. For example, if the binary dummy Dit indicates whether or not firm i in period t is
an exporter, we can specify a linear relationship between log markups and export status

lnµit = δ0 + δ1Dit + νit (38)

as in De Loecker and Warzynski (2012). Substituting (38) into (37), we have the linear specification

− ln sit = (δ0 − lnβM ) + δ1Dit + (εit + νit). (39)

In the Cobb-Douglas case, we can thus learn about the association between log markups and export status
from a simple regression of the log of the observed cost share in revenue for a flexible input on a constant
and the export status dummy.22

For more general Hicks-neutral gross output production functions, we can write the log of the output
elasticity ln εQ,M = f(k, l,m),23 in which case (39) becomes

− ln sit = g(kit, lit,mit) + δ1Dit + (εit + νit) (40)

where g(kit, lit,mit) = δ0 − f(kit, lit,mit). We can then learn about the association between log markups
and export status either by approximating g(kit, lit,mit) using a flexible functional form, or by estimating
(40) using semi-parametric methods for partially linear models (Robinson (1988)).

This cost share approach allows us to learn about some forms of variation across firms in markups under
essentially the same assumptions needed for the production approach, but without requiring a consistent
estimate of the output elasticity. Except in the Cobb-Douglas case, we could not use this approach to study
the association between markups and measures of firm size (e.g. the log of employment, lit) or measures
of factor intensity (e.g. the log of the capital-labor ratio, kit − lit); we may also have low power to detect
significant association between markups and observed firm characteristics that are strongly correlated with
functions of the production inputs. In principle, this approach could also be used to study trends in markups
over time, as in De Loecker et al. (2020). However, it should be emphasized that the trend in the log of
the cost share in revenue for a flexible input identifies the trend in the log of the markup only under the
maintained assumption that the output elasticity is stable over time, which cannot be verified without a
way of estimating the output elasticity consistently for different sub-periods.

22As in De Loecker and Warzynski (2012), additional controls can be included in this regression specifi-
cation, but OLS is still unlikely to consistently estimate the causal effect of exporting on markups. If the
sample used to estimate (39) pools data for firms in several sectors, sector dummies can be used to allow
for heterogeneity in the output elasticity βM between sectors.

23For example, in the translog case, we have f(k, l,m) = ln(βM + βKMk + βLM l + βMMm).
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